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The Pythagorean theorem is one of the most beautiful theorems in mathematics. 
It is simple to state, easy to use, and highly accessible – it doesn’t require a huge 
amount of mathematical machinery to prove. We’ll be able to prove it (in numerous 
ways!) with what we’ve learned so far.

We’ll begin by stating the basics of the Pythagorean theorem in Section 6.1, and 
then in Section 6.2 we’ll discuss the general form of Pythagorean triples, which are 
triples of integers that satisfy the Pythagorean theorem. We’ll then prove the theorem 
in many (seven!) ways in Section 6.3. Some of the proofs require nothing more than 
the 𝑏ℎ/2 formula for the area of a triangle. And some don’t even require that!
Section 6.4 covers an interesting real-life application of the Pythagorean theorem, 
namely, how far you can see to the horizon from a tall building. Section 6.5 
then presents many examples and exercises for practice. We’ll end with a general 
discussion in Section 6.6 about the benefits of working with letters instead of 
numbers.

6.1 The theorem

The Pythagorean theorem deals with right triangles. To repeat a few things we 
mentioned in Chapter 5: Right triangles are ones that have a 90◦ angle (which is 
called a “right angle”). A 90◦ angle is simply what you have at the corner of a 
rectangle. The two sides that meet at the right angle are perpendicular to each 
other. These two perpendicular sides in a right triangle are called the legs. The 
third side (opposite the 90◦ angle) is called the hypotenuse. So in Fig. 6.1 the 
hypotenuse has length 𝑐, and the legs have lengths 𝑎 and 𝑏. As with other words
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256 Chapter 6. Pythagorean theorem

like “radius” and “circumference,” the words “hypotenuse” and “leg” can refer to
either the segment itself (as in the preceding sentence), or the length of the segment
(as in “the hypotenuse is 𝑐”). The usage is generally clear from the context. The
standard notation for a right angle is a little square, as we have drawn.

a

b

c

Figure 6.1

As mentioned in Section 5.4, the Pythagorean theorem states that the sides of a
right triangle are related by

𝑎2 + 𝑏2 = 𝑐2 (Pythagorean theorem) (6.1)

This statement of the Pythagorean theorem was certainly known before Pythagoras’
time, although it is unknown how much earlier. The date (and creator) of the first
proof is also unknown. In any case, we can only wonder what Pythagoras’ first
encounter with the theorem looked like. . .

Pythagoras wept and despaired
As he added the legs and compared.
Then he jumped up with glee,
“Though they don’t add to 𝑐,
It’s a match if the lengths are all squared!”

We’ll prove the theorem in Section 6.3 below, but there are a few things we
should discuss first. If you draw a triangle with a random shape, the odds are that it
won’t be a right triangle. That is, most random sets of three numbers 𝑎, 𝑏, 𝑐 don’t
satisfy Eq. (6.1). Only special sets do, and hence yield a right triangle. The simplest
set of integers that satisfy the theorem is 3, 4, 5. These lengths produce a right
triangle because

32 + 42 = 52 ⇐⇒ 9 + 16 = 25. (6.2)

Most right triangles don’t have integer lengths for all three sides. Or said in another
way, if you pick integers for two sides of a right triangle, the third side probably
won’t be an integer. For example, if we pick the two legs to be 1 and 1, then the
hypotenuse is given by

12 + 12 = 𝑐2 =⇒ 𝑐2 = 2 =⇒ 𝑐 =
√

2 ≈ 1.414, (6.3)
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which isn’t an integer. (This triangle is our old friend, the 45-45-90 right triangle.)
Or if we pick the hypotenuse to be 8 and one leg to be 5, then the other leg is given
by

𝑎2 + 52 = 82 =⇒ 𝑎2 + 25 = 64. (6.4)

Subtracting 25 from both sides of this equation (as we learned in Section 4.5), and
then taking the square root of both sides, gives

𝑎2 = 39 =⇒ 𝑎 =
√

39 ≈ 6.245, (6.5)

which isn’t an integer.
If all three sides of a right triangle are integers, then we call the set of these

integers a Pythagorean triple (or just a triple, for short). People often list the
integers of a triple inside parentheses, like “(𝑎, 𝑏, 𝑐).” For example, in addition to
the Pythagorean triple (3, 4, 5) mentioned above, a few other triples are (6, 8, 10),
(5, 12, 13), and (8, 15, 17) because, as you can verify,

62 + 82 = 102, 52 + 122 = 132, 82 + 152 = 172. (6.6)

A quick way of producing new triples from other known triples is to use the fact
that any integer multiple of the three numbers in a triple yields three new numbers
that are again a triple. This is true because if (𝑎, 𝑏, 𝑐) is a triple, then we can multiple
both sides of the Pythagorean theorem by 𝑠2 (where 𝑠 is an integer) to obtain another
true statement. (If the two sides of an equation are equal, then multiplying these
two equal quantities by the same number 𝑠2 yields two new quantities that are again
equal.) This multiplication by 𝑠2 yields

𝑎2 + 𝑏2 = 𝑐2 =⇒ 𝑠2𝑎2 + 𝑠2𝑏2 = 𝑠2𝑐2 =⇒ (𝑠𝑎)2 + (𝑠𝑏)2 = (𝑠𝑐)2. (6.7)

But this is just the statement that (𝑠𝑎, 𝑠𝑏, 𝑠𝑐) is a Pythagorean triple, as we wanted
to show. For example, the (6, 8, 10) triple mentioned above is the (3, 4, 5) triple
multiplied by 𝑠 = 2.

This multiplication of each side of a right triangle by 𝑠 and ending up with
another right triangle makes intuitive sense. If you’re given a right triangle, and if
you scale it up uniformly by multiplying all of the sides by the same factor, then
the new triangle has the same shape as the old one, so it’s still a right triangle. The
new triangle is similar to the old one (it has the same shape); recall the discussion
of similarity in Section 5.4. Even if 𝑠 isn’t an integer, we’ll still end up with a right
triangle. But if the sides aren’t integers, we don’t call it a Pythagorean triple.

Note that the Pythagorean theorem in Eq. (6.1) is symmetric in 𝑎 and 𝑏. That
is, both 𝑎 and 𝑏 are raised to the same power (namely 2), and the two terms have
the same coefficient (namely 1). This symmetry follows from the fact that it can’t
matter which leg you arbitrarily choose to label as 𝑎, and which one you label as
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𝑏. If someone claimed that the theorem took the form of, say, 𝑎2 + 2𝑏2 = 𝑐2, then
you would get a different result for 𝑐 if you switched your 𝑎 and 𝑏 labels. So this
“theorem” can’t be correct.

For example, if the two legs are 5 and 8, and if we label them as 𝑎 = 5
and 𝑏 = 8 (which we’re free to do), then the 𝑎2 + 2𝑏2 = 𝑐2 “theorem” gives
52 + 2 · 82 = 𝑐2 =⇒ 153 = 𝑐2 =⇒ 𝑐 =

√
153 = 12.4. However, if we label

the legs as 𝑎 = 8 and 𝑏 = 5 (which we’re also free to do), the “theorem” gives
82 + 2 · 52 = 𝑐2 =⇒ 114 = 𝑐2 =⇒ 𝑐 =

√
114 = 10.7. But there can be only one

value of 𝑐, of course. So the fact that our formula gives two different values means
it can’t be correct.

6.2 General form of triples

It turns out that there is a very simple and general way to produce Pythagorean
triples, beyond the easy ones that are simply integer multiples of other triples. We
claim that if we start with any two integers 𝑚 and 𝑛, then the following three integers
𝑎, 𝑏, 𝑐 are a Pythagorean triple, that is, they satisfy the Pythagorean theorem:

𝑎 = 𝑚2 − 𝑛2, 𝑏 = 2𝑚𝑛, 𝑐 = 𝑚2 + 𝑛2. (6.8)

You can verify this claim by doing the following exercise.

Exercise 6.1 Show that the 𝑎, 𝑏, and 𝑐 expressions in Eq. (6.8) satisfy
Eq. (6.1), by calculating the sum 𝑎2 + 𝑏2 and then showing that the result
equals 𝑐2.

For integers 𝑚, 𝑛, who knew
That 𝑏 is their product times 2?
And 𝑎? It’s a fact:
Form the squares and subtract.
And then 𝑐? Instead add up the two.

The preceding exercise is the standard way of showing that the 𝑎, 𝑏, and 𝑐

expressions in Eq. (6.8) form a Pythagorean triple. Here’s another way. We want
to show that 𝑎2 + 𝑏2 = 𝑐2, and this relation is equivalent to (by subtracting 𝑎2 from
both sides) 𝑏2 = 𝑐2 − 𝑎2. We can now invoke the handy difference-of-squares result



6.2. General form of triples 259

from Eq. (3.22) to write 𝑐2 − 𝑎2 as (𝑐 + 𝑎) (𝑐 − 𝑎). So our goal is to show that this
product equals 𝑏2. Plugging in the expressions for 𝑎 and 𝑐 from Eq. (6.8) gives

𝑐2 − 𝑎2 = (𝑐 + 𝑎)(𝑐 − 𝑎)

=
(
(𝑚2 +��𝑛

2) + (𝑚2 −��𝑛
2)

) (
(��𝑚2 + 𝑛2) − (��𝑚2 − 𝑛2)

)
= (2𝑚2) (2𝑛2) = 4𝑚2𝑛2 = (2𝑚𝑛)2 = 𝑏2, (6.9)

as desired.

Exercise 6.2 Show again that the 𝑎, 𝑏, and 𝑐 expressions in Eq. (6.8) satisfy
Eq. (6.1), by applying the difference-of-squares result like we just did, but
now with the Pythagorean theorem written as 𝑎2 = 𝑐2 − 𝑏2.

It turns out that not only does Eq. (6.8) generate Pythagorean triples, it generates
all of them. That is, there are no triples that aren’t of the form in Eq. (6.8); every
triple has an associated (𝑚, 𝑛) pair. The proof of this statement (“If three numbers
are a triple, then they take the form of Eq. (6.8)”) is more involved than our above
proofs of the reverse statement (“If three numbers take the form of Eq. (6.8), then
they are a triple”). So we’ll just accept it here.

Table 6.1 lists the triples that Eq. (6.8) generates for various (𝑚, 𝑛) pairs. Some
of the triples are multiples of others. For example, (24, 10, 26) is 2 times (5, 12, 13),
although in a different order.

𝑎 𝑏 𝑐

𝑚 𝑛 𝑚2 − 𝑛2 2𝑚𝑛 𝑚2 + 𝑛2

2 1 3 4 5
3 1 8 6 10
3 2 5 12 13
4 1 15 8 17
4 2 12 16 20
4 3 7 24 25
5 1 24 10 26
5 2 21 20 29
5 3 16 30 34
5 4 9 40 41

Table 6.1: Pythagorean triples



260 Chapter 6. Pythagorean theorem

Exercise 6.3 Pick a few of the triples in Table 6.1 and verify that they do
indeed satisfy the Pythagorean theorem.

If you stare at Table 6.1 long enough, a few things become clear, one of which
is the following. Look at the cases where 𝑛 = 𝑚 − 1. So (𝑚, 𝑛) takes the form
of (2, 1), (3, 2), (4, 3), (5, 4), etc. The 𝑎 values associated with these pairs are,
respectively, the odd numbers 3, 5, 7, and 9, which equal 𝑚 + 𝑛. And in each case,
you will observe that 𝑏 and 𝑐 differ by 1 and add up to 𝑎2. For example, in the
(5, 4) case we have 40 + 41 = 92. And in the (4, 3) case we have 24 + 25 = 72. The
following example shows that this pattern holds for all of the (𝑚, 𝑛) = (𝑚, 𝑚 − 1)
cases.

Example 6.1 For the 𝑛 = 𝑚 − 1 cases, show that 𝑎 is odd and equals 𝑚 + 𝑛.
And show that 𝑏 and 𝑐 differ by 1 and add up to 𝑎2.

Solution: If we plug 𝑛 = 𝑚−1 into the expressions for 𝑎, 𝑏, and 𝑐 in Eq. (6.8),
we obtain

𝑎 = 𝑚2 − (𝑚 − 1)2 =��𝑚2 − (��𝑚2 − 2𝑚 + 1) = 2𝑚 − 1,
𝑏 = 2𝑚(𝑚 − 1) = 2𝑚2 − 2𝑚,

𝑐 = 𝑚2 + (𝑚 − 1)2 = 𝑚2 + (𝑚2 − 2𝑚 + 1) = 2𝑚2 − 2𝑚 + 1. (6.10)

We want to show four things:

• 𝑎 is odd: Since 𝑎 takes the form of 2𝑚 − 1 where 𝑚 is an integer, we
see that 𝑎 is indeed odd. (Even numbers take the form of 2𝑚, and odd
numbers take the form of 2𝑚 − 1. Or equivalently 2𝑚 + 1.)

• 𝑎 = 𝑚 + 𝑛: Since 𝑚 + 𝑛 = 𝑚 + (𝑚 − 1) = 2𝑚 − 1, we see that 𝑎 is equal
to 𝑚 + 𝑛, as desired. Alternatively, the difference-of-squares result in
Eq. (3.22) tells us that if 𝑛 = 𝑚 − 1, then

𝑎 = 𝑚2 − 𝑛2 = (𝑚 + 𝑛) (𝑚 − 𝑛) = (𝑚 + 𝑛) (1) = 𝑚 + 𝑛, (6.11)

because the difference between 𝑚 and 𝑛 is 1.

• 𝑏 and 𝑐 differ by 1: The forms we found for 𝑏 and 𝑐 in Eq. (6.10) tell us
that 𝑐 = 𝑏 + 1, so they do in fact differ by 1.
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• 𝑏 + 𝑐 = 𝑎2: The sum of 𝑏 and 𝑐 is

𝑏 + 𝑐 = (2𝑚2 − 2𝑚) + (2𝑚2 − 2𝑚 + 1) = 4𝑚2 − 4𝑚 + 1. (6.12)

This is indeed equal to 𝑎2 since

𝑎2 = (2𝑚 − 1)2 = 4𝑚2 − 4𝑚 + 1. (6.13)

Here are a few exercises, two involving numbers and two involving letters.

Exercise 6.4 The size of a rectangular computer screen is generally specified
by giving the length of the diagonal line. What is the size of a screen that is
11.3 inches wide and 7.0 inches tall? Or 14.4 inches wide and 9.0 inches tall?

Exercise 6.5 An American football field is 100 yards long (excluding the
end zones) and 53.33 yards (160 feet) wide. If you walk from one corner to
the opposite one, what distance do you save by walking diagonally instead of
along two sides?

Exercise 6.6 In Table 6.1, another thing you may have noticed is that for the
𝑛 = 1 cases, 𝑎 and 𝑐 are obtained by taking half of 𝑏, squaring the result, and
then adding or subtracting 1. For example, in the (5, 1) case, 𝑏 is 10. Half of
this is 5, and 52 is 25. Adding or subtracting 1 then gives 24 and 26, which
are indeed the 𝑎 and 𝑐 values. The concise way of stating this result is that 𝑎
and 𝑐 take the form of (𝑏/2)2 ± 1. Explain why this is true by letting 𝑛 = 1 in
Eq. (6.8).

Exercise 6.7 Another way of stating the 𝑛 = 𝑚 − 1 result discussed above
in Example 6.1 is the following. Take an odd number (call it 𝑎) and square
it. Then add or subtract 1 from the result. And then divide each of these
two numbers by 2. Call the results 𝑐 and 𝑏. (So if we start with 𝑎 = 9, we
obtain 81, and then 82 and 80, and then 41 and 40. This is the last triple in
Table 6.1.)

For an (𝑎, 𝑏, 𝑐) triplet generated this way, calculate the sum 𝑎2 + 𝑏2 and then
show that it equals 𝑐2. Hint: Since 𝑎 is an odd number, it takes the general
form of 2𝑘 − 1 where 𝑘 is an integer. (This problem gets a little messy. You’ll
need to square a trinomial, but stick with it!)
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6.3 Seven proofs of the theorem

Let’s now prove the Pythagorean theorem – in seven different ways! We’ll present all
of these proofs as exercises, so that you’ll have the chance to do them yourself. We
don’t want you to miss out on any of the fun! Some of the proofs are great examples
of what algebra can do for you, while others (the third and fourth ones) are purely
geometric and don’t require any algebra at all. You might think it’s excessive to
include seven proofs here, but the strategies involved are varied and instructive. And
besides, it’s always hard to pass up any new opportunity to prove the Pythagorean
theorem! Here’s the statement of the theorem:

Pythagorean theorem: If the sides of a right triangle are 𝑎, 𝑏, and 𝑐, with 𝑐 being
the hypotenuse, then 𝑎2 + 𝑏2 = 𝑐2.

Proof: And here are the proofs:

Exercise 6.8 (Proof 1) Prove the Pythagorean theorem by using the fact that
the area of the overall square in Fig. 6.2 equals the sum of the areas of the
four triangles plus the area of the smaller square. (There’s a bit of an optical
illusion in this figure. The sides of the overall square are indeed vertical and
horizontal, even if they don’t look it!)

a

a

b
c

Figure 6.2

Exercise 6.9 (Proof 2) Fig. 6.3 shows a square with side length 𝑐 subdivided
into four right triangles with legs 𝑎 and 𝑏 (and hypotenuse 𝑐), along with a
square in the middle with side length 𝑏 − 𝑎. Prove the Pythagorean theorem
by using the fact that (as in the preceding proof) the area of the overall square
equals the sum of the areas of the four triangles plus the area of the smaller
square.
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a

a

b

b − a

b − a

b

c

c

Figure 6.3

Exercise 6.10 (Proof 3) This proof requires no algebra; it’s basically a
geometry-only interpretation of the first proof above. Perhaps it shouldn’t
count as a separate proof, but it’s so slick, I think it should. It’s the quickest
and simplest proof of them all.

Fig. 6.4 shows four shaded triangles inside a square. Show how to rearrange
the triangles in a way that makes it clear that the area of the white region
(which is 𝑐2) also equals 𝑎2 + 𝑏2.

b

b

c

a

a

c2

Figure 6.4

Exercise 6.11 (Proof 4) Here’s another geometry-only proof. Fig. 6.5 shows
a combo version of Figs. 6.2 and 6.3. Rearrange some of the shapes to show
that 𝑎2 + 𝑏2 = 𝑐2. We’ve given a hint by drawing two shaded squares with
areas 𝑎2 and 𝑏2. (These shapes are indeed squares, since all sides are either
𝑎 or 𝑏.)

Exercise 6.12 (Proof 5) The overall right triangle in Fig. 6.6 has side lengths
𝑎, 𝑏, and 𝑐. The altitude to the hypotenuse is drawn. Explain why the two
smaller right triangles produced are similar to (that is, they have the same
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a

a

a

b

b

b c

c

Figure 6.5

angles as) the overall right triangle. Then use this similarity to find the two
lengths that 𝑐 is divided into. The Pythagorean theorem will follow from the
fact that these two lengths add up to 𝑐.

a

b

c

Figure 6.6

Exercise 6.13 (Proof 6) In the preceding proof, we found that the two sub-
triangles in Fig. 6.6 are similar to the overall triangle. This similarity allows
us to use the scaling results from Section 5.5 to determine how the areas of the
sub-triangles are related to the area of the overall triangle. The Pythagorean
theorem will follow from the fact that the two sub-areas add up to the overall
area.

Exercise 6.14 (Proof 7) This final proof is how Euclid proved the Pythagorean
theorem. It’s a bit more involved than the preceding six proofs, and it relies
on one fact that we haven’t covered yet – the (entirely believable) “side-angle-
side” (SAS) postulate, which says that if two triangles have two sides in
common, along with the angle between them, then they are congruent (which
is a fancy word for identical; they have the same shape and same size). If you
play around with a few examples, you’ll be convinced that this postulate is
correct.
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In Fig. 6.7, we have drawn squares on the sides of right triangle 𝐴𝐵𝐶. Proving
the Pythagorean theorem is equivalent to showing that the sum of the areas
of the two smaller squares (𝑎2 + 𝑏2) equals the area of the big square (𝑐2).

Your task: First show that the triangles in each shaded pair in Fig. 6.7 are
congruent, and then explain how their areas relate to the areas of the smaller
squares, and also to the two rectangular sub-areas 𝑅1 and 𝑅2 of the large
square, defined by the dashed line drawn. Hint: The area of a triangle is half
the base times the height. Find some helpful bases and heights! For example,
triangle 𝐴1𝐵𝐴 can be considered to have base 𝐴1𝐵 and height 𝐴1𝐴2.

a

a

b

b

A2

A1

C1

C2

R2

R1

B1 B2

C

B

A

c
c

c

Figure 6.7
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Having worked through all of these proofs, you can now say without a doubt
that you understand the Pythagorean theorem! And that has its perks. . .

It’s quick to spot which kids are cool,
As they saunter the halls of the school.
“Who’s got the swagger? Us!
We know Pythagoras!
Sure, we’re all square, but we rule!”

The converse

The Pythagorean theorem says, “If a triangle is right, then its side lengths satisfy
𝑎2 + 𝑏2 = 𝑐2.” The reverse statement (the converse) is also true:

Converse: If a triangle’s side lengths satisfy 𝑎2 + 𝑏2 = 𝑐2, then the triangle is right.

As with the “forward” direction of the theorem we proved above, there are many
different ways to prove the converse. We’ll present just one proof here.

We’re starting with the assumption that 𝑎2 + 𝑏2 = 𝑐2, and our goal is to show
that the triangle is right. That is, we want to show that it cannot look like either of
the triangles (obtuse or acute) in Fig. 6.8, where the 𝑏 side is tilted. So for both of
these possibilities, our goal is to show that 𝑥 must be zero. That is, the 𝑥 segment
must in fact not exist; equivalently the top vertex is actually directly over the left end
of the 𝑎 side. We’ll address the obtuse case here. (The acute case proceeds in the
same manner, with only one small sign modification, as you can check.) This proof
makes use of the “forward” direction of the Pythagorean theorem, so it assumes
(quite correctly!) that we’ve already proved that.

a a

b2 − x2

x x

b
c

(a)
(obtuse) (acute)

(b)

b
c

b2 − x2

Figure 6.8

From the Pythagorean theorem, the vertical leg of the small right triangle in
Fig. 6.8(a) has length

√
𝑏2 − 𝑥2, as shown. The Pythagorean theorem applied to the
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overall big right triangle then gives

(𝑎 + 𝑥)2 +
(√

𝑏2 − 𝑥2)2 = 𝑐2

=⇒ (𝑎2 + 2𝑎𝑥 +��𝑥
2) + (𝑏2 −��𝑥

2) = 𝑐2. (6.14)

Subtracting 𝑐2 from both sides yields

(𝑎2 + 𝑏2 − 𝑐2) + 2𝑎𝑥 = 0 =⇒ 0 + 2𝑎𝑥 = 0, (6.15)

where we have used the given information that 𝑎2 + 𝑏2 = 𝑐2 =⇒ 𝑎2 + 𝑏2 − 𝑐2 = 0.
We see that the product 2𝑎𝑥 equals zero. And since neither 2 nor 𝑎 is zero, it must
be the case that 𝑥 = 0. In other words, the 𝑏 side is vertical, and the triangle is a
right triangle, as we wanted to show.

6.4 Distance to the horizon

Here’s an interesting real-life application of the Pythagorean theorem: If you’re in
a tall building with height ℎ, how far can you see to the horizon? Let’s assume that
the building is at the ocean shore, so that we don’t need to worry about trees and
hills and such.

The basic setup is shown in Fig. 6.9. The height ℎ we’ve drawn is very much
exaggerated (being about 1/5 of the earth’s radius 𝑅), to make it easier to see what’s
going on. In reality, there’s no chance that ℎ (for any everyday-type scenario) would
be comparable to the earth’s radius 𝑅. Even at the altitude of the International Space
Station (which is about 250 miles), ℎ is only 1/16 of 𝑅 (which is about 4000 miles).

R

R

hd

you

you can see 
to here

Figure 6.9

Our goal is to find the distance 𝑑 in the figure, in terms of the known quantities
ℎ and 𝑅. Now, the desired distance you can see to the horizon is slightly ambiguous.
Do we mean the straight-line distance 𝑑 drawn, or do we mean the curved distance
along the surface of the earth? Fortunately it doesn’t matter, because these two
distances are essentially equal for any reasonable (not excessively large) value of ℎ.
But for concreteness let’s say that our goal is to find the straight-line distance 𝑑.
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The straight line representing the distance 𝑑 is tangent to the earth. We’ll talk
about “tangents” below in Exercise 6.24, but in short, a tangent line is one that just
barely skims the circle. The tangent line is in fact the line of sight we’re concerned
with, because if you look at an angle that is slightly too high, you’ll be looking at
a point in the sky; and if you look at an angle that is slightly too low, you’ll be
looking at a nearby point on the ground (which therefore won’t be the farthest point
you can see). So we are indeed concerned with the tangent line – the cutoff between
the ground and the sky. We’ll see in Exercise 6.24 that a tangent line is always
perpendicular to the radius at the point of contact with the circle. Let’s just accept
this (quite believable) fact for now. We therefore have the right triangle shown in
Fig. 6.9, which means that we can apply the Pythagorean theorem.

Let’s do a numerical example first, and then we’ll find the general solution in
terms of letters. We’ll pick ℎ to be

ℎ = 100 meters, (6.16)

which is about 330 feet – a reasonably tall building. We could work with any unit
of length (feet, yards, meters, etc.), but we’ll choose the metric system’s meters
because other lengths in it (like kilometers) are obtained by multiplying by simple
powers of 10. A kilometer is 1000 meters. (The prefix “kilo” means 1000.) The
abbreviations for meter and kilometer are “m” and “km.” A meter is about 39.4
inches, which is a little more that a yard (3 feet, or 36 inches).

In addition to assuming we’re at the ocean shore (so that we don’t need to worry
about trees and hills), we’ll work in the approximation where the earth is a perfect
sphere. It actually isn’t; it bulges a little at the equator because it’s spinning. The
radius of the earth varies from about 6,356 km at the poles to 6,378 km at the equator.
There’s no need for that level of accuracy here, so we’ll just round these values up
to 6,400 km. Hence

𝑅 = 6,400 km (or equivalently 6,400,000 meters), (6.17)

which is the same as the 4000 miles we stated above. This follows from the fact
that there are 1609 meters in a mile, and hence about 1.6 kilometers in a mile (a
mile is the larger of the two units). So to go from km to miles, you divide by
1.609, or equivalently multiply by 0.62. (A 10 km race is 6.2 miles.) This checks:
(6400) (0.62) ≈ 4000, and (4000) (1.6) = 6400.

We can now apply the Pythagorean theorem. In Fig. 6.9, the three sides of
our right triangle are the desired distance 𝑑, the radius 𝑅 = 6,400,000 m, and the
hypotenuse 𝑅 + ℎ = 6,400,100 m. The Pythagorean theorem therefore gives

𝑑2 + (6,400,000 m)2 = (6,400,100 m)2. (6.18)

Subtracting (6,400,000 m)2 from both sides of this equation gives

𝑑2 = (6,400,100 m)2 − (6,400,000 m)2 = 1,280,010,000 m2. (6.19)
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Taking the square root of both sides then gives

𝑑 =
√

1,280,010,000 m2 ≈ 35,800 m ≈ 36 km. (6.20)

You can therefore see about 36 kilometers (or about (36)(0.62) = 22 miles) from a
100-meter building. That’s quite far!

Using letters

You undoubtedly noticed that the above calculation contained some large numbers,
which were somewhat of a pain. The numbers would have been smaller if we had
chosen to work with kilometers instead of meters (the lengths would have been
𝑅 = 6400 km and 𝑅 + ℎ = 6400.1 km), but numbers are still often a hassle to work
with. So let’s now solve the problem algebraically, that is, in terms of letters. There
are significant advantages to working with letters, as we’ll spell out in Section 6.6.

In terms of letters, applying the Pythagorean theorem to the triangle in Fig. 6.9
gives (in place of Eq. (6.18) with numbers)

𝑑2 + 𝑅2 = (𝑅 + ℎ)2 =⇒ 𝑑2 +��𝑅
2 =��𝑅

2 + 2𝑅ℎ + ℎ2

=⇒ 𝑑 =
√

2𝑅ℎ + ℎ2, (6.21)

where we have subtracted 𝑅2 from both sides, and then taken the square root of
both sides, to obtain the last line. This

√
2𝑅ℎ + ℎ2 result is the general answer to

the problem. For any values of 𝑅 and ℎ we’re given, we can simply plug them
into

√
2𝑅ℎ + ℎ2 to obtain the desired distance 𝑑. You can check that if you plug

in the 𝑅 = 6,400,000 m and ℎ = 100 m values we used above, you will reproduce
Eq. (6.20).

Eq. (6.21) is a nice clean result. But we can go one step further to obtain an
even cleaner result. In a real-life situations, the ℎ2 term is much smaller than the
2𝑅ℎ term. It is smaller by the factor ℎ/2𝑅 (since 2𝑅ℎ · ℎ/2𝑅 = ℎ2), which is very
small for any everyday value of ℎ. If you’re in a tall building with height ℎ = 100 m
(330 feet), then

ℎ

2𝑅
=

100 m
2(6,400,000 m) =

1
128,000

≈ 8 · 10−6. (6.22)

Even at the height of a commercial airplane (about 10,000 m, or 33,000 feet), the
value of ℎ/2𝑅, which is 100 times larger than for 100 m (or 330 feet), is still only
1/1280. So to a good approximation we can simply ignore the ℎ2 term in Eq. (6.21)
and say that

𝑑 ≈
√

2𝑅ℎ. (6.23)

This is an extremely clean result! Now, whenever you derive an approximate
answer like we just did, you gain something and you lose something. You lose
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some truth, of course, because your new answer is an approximation and therefore
technically not correct (although the error becomes very small in the appropriate
limit – small ℎ here). But you gain some aesthetics. Your new answer is invariably
much cleaner (often involving only one term), which makes it much easier to see
what’s going on.

For example, a quick look at Eq. (6.23) tells you that 𝑑 does not grow linearly
with ℎ (that is, it isn’t directly proportional to ℎ), but instead grows like the square
root of ℎ. So if you want to make 𝑑 be, say, 5 times larger, then you need to make
ℎ be 25 times larger. Simply increasing ℎ by a factor of 5 won’t do it. Similarly, if
you want to increase 𝑑 by a factor of 10, you need to increase ℎ by a factor of 100.
Or said in a slightly different way, if you increase ℎ by a factor of 100, you increase
𝑑 by a factor of only 10. Simple relations like these between 𝑑 and ℎ aren’t obvious
from looking at the correct (but not as simple) result in Eq. (6.21).

How close is the approximate answer in Eq. (6.23) to the exact answer in
Eq. (6.21) when 𝑅 = 6,400,000 and ℎ = 100? Plugging in the numbers gives (the
first result here is just a repeat of Eq. (6.20), without the rounding)

𝑑exact =
√

2𝑅ℎ + ℎ2 =
√

1,280,010,000 m2 = 35,777.23 m,

𝑑approx =
√

2𝑅ℎ =
√

1,280,000,000 m2 = 35,777.09 m. (6.24)

We see that our
√

2𝑅ℎ approximation is a very good one. No one could possibly care
about an error of 0.14 m = 14 cm, when we’re talking about distances of roughly
36 km. There’s truly no harm in ignoring the comparatively tiny ℎ2 term. Even at
the top of a tall mountain, the ℎ2 term will have no noticeable effect (when compared
with the distance you can see).

When looking afar from peak,
Remember this useful technique:
In finding the distance,
Ignore the existence
Of terms whose effect is quite weak.

Exercise 6.15 The height of the International Space Station is ℎ ≈ 𝑅/16,
which equals 250 miles, or 400 km. In terms of 𝑅, find the exact and
approximate answers for 𝑑 in Eqs. (6.21) and (6.23). Then plug in 𝑅 =
6,400 km to find the actual distances. By how much do they differ?
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What does Eq. (6.23) give for some other values of ℎ? If you’re standing at the
shore of the ocean, let’s say that your eyes are at a height of ℎ = 2 m. We then have

𝑑 =
√

2𝑅ℎ =
√

2(6,400,000 m) (2 m) = 5060 m ≈ 5 km ≈ 3 miles. (6.25)

On one hand, this might seem like a large distance, given that your eyes are only 2
meters above the ground. But on the other hand, this distance is much smaller than
it would be if the earth were flat!

The values of 𝑑 ≈
√

2𝑅ℎ for a few other values of ℎ are listed in Table 6.2.
The ℎ’s are given in meters, and the 𝑑’s are given in both kilometers and miles.
Remember, to go from kilometers to miles, we multiply by 0.62. Are the various
values of 𝑑 larger or smaller than what you expected? (In some cases we’ve kept
more significant figures than we’re entitled to. We’ve done this so that you can
check your calculations if you want to reproduce the numbers yourself. We’ve used
6,400,000 m for 𝑅, and 0.62 for the conversion from kilometers to miles, although
these are just rounded figures.)

Location ℎ (in m) 𝑑 (in km) 𝑑 (in miles)
Standing ant 0.01 0.36 0.2 (1200 ft)
Your eye near ground 0.1 1.1 0.7
Person standing 2 5 3
Somewhat tall building 100 36 22
Burj Khalifa observatory 550 84 52
Pike’s Peak, Colorado 4300 235 145
Commercial airplane 10,000 358 222
Space Station 400,000 2263 1403

Table 6.2: Distances to the horizon

Concerning the first entry in Table 6.2, the standing ant would need to be at the
shore of very still water. Even the tiniest ripples (near where the tangent line in
Fig. 6.9 touches the earth) would ruin our perfect-sphere assumption for the earth.
As ℎ gets larger, ripples (and eventually big waves) can be ignored.

Mt. Everest is about 8850 m tall, which is roughly the same as the 10,000 m
commercial-airplane entry in the table. So you can see about 200 miles from the
top of Mt. Everest. Or rather, you could see that far if there weren’t other mountains
around.

Depending on where the measurement is taken, the straight-line distance between
the east and west coasts of the US is about 2500 miles. Therefore, since the Space
Station can see 1400 miles in either direction, for a total of 2800 miles, it can (just
barely) see both coasts at the same time.
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Here’s an easy formula to remember if you want to determine the distance 𝑑

associated with a given height ℎ. Let ℎ be 𝑁 meters. (So 𝑁 is just a pure number
without any units.) Then

𝑑 =
√

2𝑅ℎ =
√

2(6,400,000 m)(𝑁 m) ≈ (3600 m)
√
𝑁. (6.26)

So we can write 𝑑 as

𝑑 ≈ (3.6 km)
√
𝑁 or (2.2 miles)

√
𝑁. (6.27)

So whatever the height ℎ is in meters, you simply need to take the square root of
that and then multiply by either 3.6 km or 2.2 miles, depending on how you want to
express your answer. But remember that in either case, 𝑁 is the number of meters.

Note that if we square both sides of Eq. (6.23), we obtain 𝑑2 = 2𝑅ℎ. Dividing
both sides by 2𝑅 (and switching sides) then gives ℎ in terms of 𝑑:

ℎ =
𝑑2

2𝑅
. (6.28)

This equation gives the answer to the question: If you want to see a given distance 𝑑,
what does your height ℎ need to be? (This is the opposite of our original question of
finding 𝑑 in terms of ℎ.) If you want to see 𝑑 = 160 km (100 miles), then Eq. (6.28)
gives the required ℎ as (we’ll work entirely with kilometers here, although you could
very well use meters; there would just be some additional 0’s in the numbers)

ℎ =
(160 km)2

2(6,400 km) = 2 km = 2000 m. (6.29)

This translates to about 6,600 feet, which is a fairly tall mountain. This case lies
between the Burj Khalifa and Pike’s Peak entries in Table 6.2.

Exercise 6.16 If you dig a straight tunnel from Boston to New York City
(about 300 km apart), what is the depth ℎ of the tunnel at its deepest point?
(Make a guess before solving the problem.) Hint: Draw a picture and look
for a useful right triangle. Ignore the ℎ2 term you will encounter, as we did
above. Assume the earth is a perfect sphere.
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6.5 Many examples and exercises

Let’s now do a number of examples and exercises. As always, you are encouraged
to treat the examples as exercises and try them on your own first.

Example 6.2 In Example 5.4 we used the area of an octagon to produce an
estimate of 𝜋. Let’s obtain another estimate here, now using the perimeter.
We’ll need to find the octagon’s side length; the altitude we drew in Fig. 5.46
is helpful for this.

Solution: Fig. 6.10 shows a 45◦ pie piece (just the triangle, without the
rounded end). Letting the radius be 1 as usual, the 45-45-90 triangle in the
left part of the pie piece has legs with lengths 1/

√
2 (from Section 5.4), as

shown.

1

s1

1 − 

45

45

2/1 2/

1 2/

Figure 6.10

The important point to realize now is that the bottom side of the pie piece has
length 1, because it’s also a radius. So a length 1 − 1/

√
2 is left for the short

segment on the right side, as shown. The Pythagorean theorem applied to the
right triangle in the right part of the pie piece then gives the octagon’s side
length 𝑠 as

𝑠2 =
(
1/
√

2
)2 +

(
1 − 1/

√
2
)2 = 1/2 +

(
1 − 2/

√
2 + 1/2

)
= 2 −

√
2. (6.30)

Taking the square root of both sides yields 𝑠 =
√

2 −
√

2 ≈ 0.765, and then
multiplying this by 8 to find the perimeter of the octagon gives 𝑃oct ≈ 6.12.
The 𝐶circ > 𝑃oct statement that the circumference of the circle is greater than
the perimeter of the octagon is then 2𝜋 > 6.12, or equivalently 𝜋 > 3.06,
after dividing by 2. This value is about 97% of the true 𝜋 ≈ 3.14 value, so
the approximation is a very good one.
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Example 6.3 Show that if the side lengths of a right triangle are equally
spaced (that is, if the hypotenuse exceeds the longer leg by the same amount
that the longer leg exceeds the shorter leg), then the sides are in the ratio of
3 : 4 : 5.

Solution: Let 𝑑 be the difference between successive sides, and let the longer
leg be 𝑎. Then the side lengths are 𝑎 − 𝑑, 𝑎, and 𝑎 + 𝑑. So the Pythagorean
theorem gives

𝑎2 + (𝑎 − 𝑑)2 = (𝑎 + 𝑑)2 =⇒ 𝑎2 = (𝑎 + 𝑑)2 − (𝑎 − 𝑑)2 (6.31)

=⇒ 𝑎2 = (@@𝑎2 + 2𝑎𝑑 +��𝑑
2) − (@@𝑎2 − 2𝑎𝑑 +��𝑑

2)
=⇒ 𝑎2 = 4𝑎𝑑 =⇒ 𝑎 = 4𝑑 =⇒ 𝑑 = 𝑎/4.

The second-to-last equation is obtained by dividing both sides of the previous
one by 𝑎, and then the last equation is obtained by further dividing by 4, and
then switching sides. (Or we could have simply divided by 4𝑎 in a single
step.)

The 𝑎 − 𝑑 leg of the triangle is therefore 𝑎 − 𝑑 = 𝑎 − 𝑎/4 = 3𝑎/4. And the
hypotenuse is 𝑎 + 𝑑 = 𝑎 + 𝑎/4 = 5𝑎/4. So the three sides are 3𝑎/4, 𝑎, and
5𝑎/4. Scaling all of these up by a factor of 4 gives sides of 3𝑎, 4𝑎, and 5𝑎.
These are indeed in the ratio of 3 : 4 : 5.

Remarks:

1. Before doing any work on this problem, we already knew that a (3, 4, 5)
right triangle has equally spaced lengths, since 5 − 4 = 4 − 3. What we
did in this solution was show that there are no other ratios (that is, no other
shapes) that also have this property.

2. Let’s be more precise about how we solved Eq. (6.31). When we arrived
at the 𝑎2 = 4𝑎𝑑 equation, what we technically should have done was to
get everything on one side of the equation, and then factor. So subtracting
4𝑎𝑑 from both sides gives 𝑎2 − 4𝑎𝑑 = 0, and then factoring this gives
𝑎(𝑎 − 4𝑑) = 0. There are two ways the lefthand side can be zero. One is
for 𝑎 to be zero. However, although 𝑎 = 0 is a solution to our mathematical
equation, it isn’t a solution to our problem, because the side lengths 𝑎 − 𝑑,
𝑎, and 𝑎+𝑑 are then −𝑑, 0, and 𝑑. And since side lengths must be positive,
we therefore reject this solution, even though it does mathematically satisfy
𝑎2 + 𝑏2 = 𝑐2.
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The other solution is the one we’re concerned with. The binomial 𝑎 − 4𝑑
is zero when 𝑎 = 4𝑑, or equivalently when 𝑑 = 𝑎/4, as we found above.
When we divided by 𝑎 above in Eq. (6.31), we were tacitly (and correctly)
assuming that 𝑎 couldn’t be zero.

3. In the above solution, we let the longer leg be 𝑎. What if we instead let the
shorter leg be 𝑎? If 𝑑 is again the common spacing, the sides are now 𝑎,
𝑎 + 𝑑, and 𝑎 + 2𝑑. So the Pythagorean theorem gives

𝑎2 + (𝑎 + 𝑑)2 = (𝑎 + 2𝑑)2

=⇒ 𝑎2 + (𝑎2 + 2𝑎𝑑 + 𝑑2) = 𝑎2 + 4𝑎𝑑 + 4𝑑2. (6.32)

Getting all of the terms over on the righthand side by subtracting 2𝑎2, 2𝑎𝑑,
and 𝑑2 from both sides gives

0 = 3𝑑2 + 2𝑎𝑑 − 𝑎2. (6.33)

To solve this equation for 𝑑 in terms of 𝑎, we can use the factoring method
we learned in Section 4.2.3. After a little guessing and checking with
FOIL, we find that Eq. (6.33) can be factored into

0 = (3𝑑 − 𝑎) (𝑑 + 𝑎). (6.34)

The first binomial on the right side is zero when 3𝑑 = 𝑎 =⇒ 𝑑 = 𝑎/3, and
the second is zero when 𝑑 = −𝑎. This second root isn’t allowed, because
the side lengths 𝑎, 𝑎 + 𝑑, and 𝑎 + 2𝑑 are then 𝑎, 0, and −𝑎. And as we
noted in the preceding remark, the side lengths must be positive.
The 𝑑 = 𝑎/3 solution is the one we’re concerned with. The longer leg is
then 𝑎 + 𝑑 = 𝑎 + 𝑎/3 = 4𝑎/3, and the hypotenuse is 𝑎 + 2𝑑 = 𝑎 + 2 · 𝑎/3 =
5𝑎/3. So the three sides are 𝑎, 4𝑎/3, and 5𝑎/3. Scaling all of these up
by a factor of 3 gives sides of 3𝑎, 4𝑎, and 5𝑎, which are in the ratio of
3 : 4 : 5. ♣

Example 6.4 In Fig. 6.11 circles with radii 𝑎 and 𝑏 lie on top of a line (that
is, they are tangent to it) and touch each other at a single point. What is
the distance 𝐵𝐴 between the points of contact on the line? (Use the fact
that a tangent line is perpendicular to the radius at the point of contact; see
Exercise 6.24 below.)

Solution: The key is the shaded right triangle in the figure. The hypotenuse
is the sum of the radii, so it equals 𝑎 + 𝑏, as shown. And the vertical leg is
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Figure 6.11

the difference of the radii, so it equals 𝑎 − 𝑏. (This is how much higher one
center is than the other.) The horizontal leg is the desired distance 𝐵𝐴, so the
Pythagorean theorem gives

(𝐵𝐴)2 + (𝑎 − 𝑏)2 = (𝑎 + 𝑏)2

=⇒ (𝐵𝐴)2 = (𝑎 + 𝑏)2 − (𝑎 − 𝑏)2

= (��𝑎2 + 2𝑎𝑏 +@@𝑏
2) − (��𝑎2 − 2𝑎𝑏 +@@𝑏

2)
= 4𝑎𝑏

=⇒ 𝐵𝐴 =
√

4𝑎𝑏 = 2
√
𝑎𝑏. (6.35)

Note that the algebraic steps here are the same as in Exercise 3.9.

In the special case where 𝑎 = 𝑏, Eq. (6.35) gives 𝐵𝐴 = 2
√
𝑎2 = 2𝑎. This

makes sense, because we have two equally sized circles sitting next to each
other, so 𝐵𝐴 spans the sum of the two (equal) radii.

Remark: The quantity
√
𝑎𝑏 is called the geometric mean (GM) of 𝑎 and 𝑏.

Another type of mean is the arithmetic mean (AM), which is just the average
(𝑎+𝑏)/2. (We’ll talk about these means in Chapter 12.) Now, the hypotenuse
of a right triangle, which is 𝑎+ 𝑏 in the present setup, is always greater than or
equal to each leg, in particular the horizontal leg which we just found equals
2
√
𝑎𝑏 here. (They are equal if the other leg 𝑎 − 𝑏 is zero, which happens if

𝑎 = 𝑏. The “triangle” is then just a flat line, which admittedly isn’t much of a
triangle.) So we have

hypotenuse ≥ leg =⇒ 𝑎 + 𝑏 ≥ 2
√
𝑎𝑏 =⇒ 𝑎 + 𝑏

2
≥
√
𝑎𝑏, (6.36)

where we have divided both sides by 2. This result tells us that the arithmetic
mean is always greater than or equal to the geometric mean (with equality
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occurring if 𝑎 = 𝑏). This statement is called the “AM-GM inequality.” You
can test it for various values of 𝑎 and 𝑏. For example, if 𝑎 = 12 and 𝑏 = 3,
then the AM is (12 + 3)/2 = 7.5, and the GM is

√
12 · 3 =

√
36 = 6. And 7.5

is indeed greater than 6.

With no mention of triangles, the above proof of the AM-GM inequality
essentially boils down to the following sequence of inequalities:

(𝑎 + 𝑏)2 ≥ (𝑎 + 𝑏)2 − (𝑎 − 𝑏)2 =⇒ (𝑎 + 𝑏)2 ≥ 4𝑎𝑏 =⇒ 𝑎 + 𝑏

2
≥
√
𝑎𝑏.

(6.37)
The first of these inequalities follows from the fact that (𝑎 − 𝑏)2, being a
square, is always greater than or equal to zero (independent of which of 𝑎 or 𝑏
is larger). And since we’re subtracting it from (𝑎 + 𝑏)2 on the righthand side,
the result must be less than or equal to (𝑎 + 𝑏)2. The second inequality comes
from the cancelations in Eq. (6.35). And the third inequality is obtained by
taking the square root of both sides and then dividing both sides by 2.

In terms of the right triangle in Fig. 6.11, the lefthand side of the first inequality
in Eq. (6.37) is the square of the hypotenuse, and the righthand side is the
square of the 𝐵𝐴 leg (from the Pythagorean theorem usage in Eq. (6.35)). ♣

Example 6.5 Fig. 6.12 shows a right triangle with sides 𝑎, 𝑏, and 𝑐. The
inscribed circle is drawn, and the contact points with the three sides divide
them into lengths 𝑚, 𝑛, and 𝑟, as shown. (The lower-right lengths on sides 𝑎
and 𝑏 are in fact equal to the radius 𝑟 , because of the square that arises from
the fact that a radius is always perpendicular to a tangent; see Exercise 6.24
below. Also, the two 𝑚 lengths shown are indeed equal, as are the two 𝑛

lengths, because the two tangents drawn from a given point have the same
length; again see Exercise 6.24. We’ll just accept these facts here.)
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(a) Write down and simplify the statement of the Pythagorean theorem, when
written in terms of 𝑚, 𝑛, and 𝑟.

(b) Find the area of the triangle in terms of 𝑚, 𝑛, and 𝑟.

(c) Use your result from part (a) to rewrite the area, and show that it equals
𝑚𝑛 (the product of the lengths into which the hypotenuse is divided).

Solution:

(a) The side lengths are 𝑚 + 𝑟, 𝑛 + 𝑟, and 𝑚 + 𝑛, so the Pythagorean theorem
gives

(𝑚 + 𝑟)2 + (𝑛 + 𝑟)2 = (𝑚 + 𝑛)2

=⇒ (��𝑚2 + 2𝑚𝑟 + 𝑟2) + (@@𝑛2 + 2𝑛𝑟 + 𝑟2) = (��𝑚2 + 2𝑚𝑛 +@@𝑛
2)

=⇒ 2𝑚𝑟 + 2𝑛𝑟 + 2𝑟2 = 2𝑚𝑛

=⇒ 𝑚𝑟 + 𝑛𝑟 + 𝑟2 = 𝑚𝑛. (6.38)

(b) Since the legs (the base and height of the triangle) have lengths 𝑎 = 𝑚 + 𝑟
and 𝑏 = 𝑛 + 𝑟, the area of the triangle is

𝐴 =
𝑎𝑏

2
=

(𝑚 + 𝑟) (𝑛 + 𝑟)
2

=
𝑚𝑛 + 𝑚𝑟 + 𝑛𝑟 + 𝑟2

2
. (6.39)

(c) From Eq. (6.38), the sum of the last three terms in the numerator of
Eq. (6.39) is 𝑚𝑛. Substituting this in, the area in Eq. (6.39) becomes

𝐴 =
𝑚𝑛 + (𝑚𝑟 + 𝑛𝑟 + 𝑟2)

2
=
𝑚𝑛 + 𝑚𝑛

2
=

AA2𝑚𝑛

AA2
= 𝑚𝑛, (6.40)

as desired.

The above solution to this problem wasn’t too long, but let’s now spend some
time discussing various things further.

Remarks:

1. The simplicity of the above 𝑚𝑛 result for the area suggests that there might
be a clean geometric way of seeing why it’s true, without needing to do
any algebra. And indeed, if we consider the 𝑚 and 𝑛 segments on the legs
(instead of on the hypotenuse) we can draw a suggestive figure. Fig. 6.13
shows the idea.
The goal is to show that the 𝑚𝑛 area of the 𝑚-by-𝑛 rectangle in the upper-
left part of the figure equals the area of triangle 𝐴𝐵𝐶, or equivalently
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triangle 𝐴𝐵𝐷. And this is indeed the case, because the 𝑚-by-𝑛 rectangle
can be transformed into triangle 𝐴𝐵𝐷 by moving the shaded triangles as
shown. (The like-shaded right triangles are congruent, because they are (1)
similar due to the common angle where they touch, and also the common
right angle, and hence the common third angle, and (2) they have the same
size due to the common 𝑟 leg.)

2. Since Eq. (6.38) tells us that 𝑚𝑛 = 𝑚𝑟 + 𝑛𝑟 + 𝑟2, the above 𝐴 = 𝑚𝑛 result
can also be written as

𝐴 = 𝑚𝑛 = 𝑚𝑟 + 𝑛𝑟 + 𝑟2 = (𝑚 + 𝑛 + 𝑟)𝑟 = 𝑆𝑟, (6.41)

where 𝑆 is the “semiperimeter” (half the perimeter). That is, 𝑆 = 𝑃/2 =
(2𝑚 + 2𝑛 + 2𝑟)/2 = 𝑚 + 𝑛 + 𝑟 . This 𝐴 = 𝑆𝑟 result actually holds for all
triangles, not just right triangles. To see why, consider Fig. 6.14, where
triangle 𝐴𝐵𝐶 is divided into sub-triangles 𝐵𝐶𝐷, 𝐶𝐴𝐷, and 𝐴𝐵𝐷. These
triangles have bases 𝑎, 𝑏, and 𝑐, and they all have the same altitude 𝑟. So
the sum of their areas (which is the area of triangle 𝐴𝐵𝐶) is

𝑎𝑟

2
+ 𝑏𝑟

2
+ 𝑐𝑟

2
=
𝑎 + 𝑏 + 𝑐

2
· 𝑟 = 𝑃

2
𝑟 = 𝑆𝑟, (6.42)

as desired.

She found a new way to express
A triangle’s 𝐴 with success.
The method prescribed:
Take the circle inscribed,
And then multiply 𝑟 by the 𝑆.

Going one step further, this 𝐴 = 𝑆𝑟 result actually holds for all polygons
(not just triangles) that have an inscribed circle, that is, one that tangen-
tially touches all sides. (A randomly drawn polygon with four or more
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sides doesn’t in general have this inscribed-circle property. Only special
polygons do.) The triangle result in Eq. (6.42) is a special case of the more
general 𝐴 = (𝑃/2)𝑟 = 𝑆𝑟 result for polygons in Eq. (5.51) in the solution
to Exercise 5.24 (where 𝑟 was equal to 1).

3. Working backwards through the steps of this exercise, we can actually
produce another (an 8th!) proof of the Pythagorean theorem. We’ll start
with two expressions for the area (the standard 𝑏ℎ/2 one in Eq. (6.39), and
the 𝑆𝑟 semiperimeter one in Eq. (6.42)) and equate them:

𝑆𝑟 =
𝑏ℎ

2
=⇒ (𝑚 + 𝑛 + 𝑟)𝑟 = (𝑚 + 𝑟) (𝑛 + 𝑟)

2
. (6.43)

We’ll now proceed through a series of steps that will turn this equation
into the Pythagorean theorem. Expanding the products and multiplying
both sides by 2 gives

2𝑚𝑟 + 2𝑛𝑟 + 2𝑟2 = 𝑚𝑛 + 𝑚𝑟 + 𝑛𝑟 + 𝑟2. (6.44)

Subtracting 𝑚𝑟 + 𝑛𝑟 + 𝑟2 from both sides then yields

𝑚𝑟 + 𝑛𝑟 + 𝑟2 = 𝑚𝑛. (6.45)

Multiplying both sides by 2 and then adding 𝑚2 + 𝑛2 to both sides gives

2𝑚𝑟 + 2𝑛𝑟 + 2𝑟2 + 𝑚2 + 𝑛2 = 2𝑚𝑛 + 𝑚2 + 𝑛2. (6.46)

Finally, grouping the terms in a helpful manner yields

(𝑚2 + 2𝑚𝑟 + 𝑟2) + (𝑛2 + 2𝑛𝑟 + 𝑟2) = 𝑚2 + 2𝑚𝑛 + 𝑛2

=⇒ (𝑚 + 𝑟)2 + (𝑛 + 𝑟)2 = (𝑚 + 𝑛)2

=⇒ 𝑎2 + 𝑏2 = 𝑐2, (6.47)
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which is the statement of the Pythagorean theorem, as desired.
Admittedly, the above sequence of steps would be a bit out of the blue if we
hadn’t already solved the exercise in the “forward” direction. But having
already performed those steps, along with knowing what we were aiming
for (the second line in Eq. (6.47)), things were reasonably predictable.
Once we produced Eq. (6.45), we just needed to proceed through Eq. (6.38)
in reverse.
In addition to the 𝑏ℎ/2 and 𝑆𝑟 expressions for the area, there is also
the 𝑚𝑛 one, which is justified via Fig. 6.13. Equating any two of these
three expressions will produce Eq. (6.45) (as you can quickly verify) and
therefore likewise produce the Pythagorean theorem. In other words, the
equalities 𝑏ℎ/2 = 𝑚𝑛 and 𝑆𝑟 = 𝑚𝑛 are the starting points of two more
proofs. If you want to count these as distinct new proofs, we’re now up to
10 of them! ♣

Exercise 6.17 A rectangular box has length 𝑎, width 𝑏, and height 𝑐. What
is the length of the diagonal between two opposite corners? (You will need
to use the Pythagorean theorem twice.)

Exercise 6.18 A large cylindrical storage tank with diameter 𝑑 and height
ℎ has a spiral staircase, as shown in Fig. 6.15, which runs once around the
cylinder as it climbs the height ℎ. (The slope of the staircase is uniform.)
What is the length of the staircase? In the special case where 𝑑 = ℎ, what is
the length in terms of ℎ? Hint: A cylinder is a “flat” space, in the sense that
you can make one out of a piece of paper without ripping the paper.

h

d

Figure 6.15

Exercise 6.19 A pendulum with length 𝑅 swings back and forth, moving in
the arc of a circle. When it is a distance 𝑥 off to the side, as shown in Fig. 6.16,
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what is its height 𝑦 above the lowest point, in terms of 𝑥 and 𝑅? Assume that
𝑦 is much smaller than 𝑅 (even though we haven’t drawn it that way), and
make an appropriate approximation. Some helpful lines are drawn.

y

x

R
path of
pendulum

pivot

Figure 6.16

Exercise 6.20 In addition to being the smallest Pythagorean triple, a 3-4-5
right triangle shows up in a very simple geometric setup. Fig. 6.17 shows two
identical large circles, both with radius 1, tangent to each other and to a line.
A small circle is then drawn tangent to the two large circles and the line. Find
the radius 𝑟 of the small circle, and then show that the right triangle drawn
has a 3-4-5 shape.

r
r

1 1

1

r

Figure 6.17

Exercise 6.21 In Exercise 5.22 we used the area of a dodecagon to produce
an estimate of 𝜋. Obtain another estimate here, now using the perimeter. You
will need to find the dodecagon’s side length; the altitude we drew in Fig. 5.53
is helpful for this.

Exercise 6.22 The goal of this exercise is to generalize the procedure in
Example 6.2 and Exercise 6.21.

(a) In Fig. 6.18, 𝐴𝐶 is a side of an 𝑛-gon inscribed in a circle with radius
1, and 𝐴𝐵 and 𝐵𝐶 are sides of a 2𝑛-gon. Assume that you somehow
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already know the 𝐴𝐶 = 𝑎𝑛 side length of the 𝑛-gon. Your task: Show
that the 𝐴𝐵 = 𝐵𝐶 = 𝑎2𝑛 side length of the 2𝑛-gon is given in terms of
𝑎𝑛 by

𝑎2𝑛 =

√
2 − 2

√
1 − 𝑎2

𝑛/4 . (6.48)

(You will need to find the 𝑥 and 𝑦 lengths shown.)
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(b) Using the known 𝑎4 =
√

2 side length of a square inscribed in a circle
with radius 1, show that the above formula reproduces the result in
Example 6.2 for the 𝑎8 side of an octagon.
Going one step further, what is 𝑎16? And what is the resulting estimate
of 𝜋? (It’s easier to work in terms of decimals here, so just plug your
square roots into a calculator.) You can keep going and obtain estimates
of 𝜋 by using a 32-gon and a 64-gon, etc., if you wish!

Exercise 6.23

(a) Show that if you inscribe a triangle in a circle, with a diameter being one
of the sides, then the triangle is a right triangle (with the diameter as the
hypotenuse). Hint: Make use of the isosceles triangles in Fig. 6.19(a),
after explaining why they are in fact isosceles.

(b) Now prove the “reverse” statement: Show that if you circumscribe a
circle around a right triangle, then the hypotenuse is a diameter of the
circle. Hint: Your goal is to show that the midpoint of the hypotenuse is
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the center of the circle, which is equivalent to showing that its distance
to the right-angled vertex (the long-dashed line drawn in Fig. 6.19(b)) is
the same as the (common) distance 𝑑 to the two other vertices. A helpful
vertical (short-dashed) line is drawn. Look for some similar triangles.

Exercise 6.24 A tangent is a line that touches a circle at exactly one point.
That is, it just barely touches the circle. The word “tangent” can be used as a
noun, as in the preceding sentence, and also as an adjective, as in “This line
is tangent to the circle.”

We’ve encountered tangents on a few occasions already. This exercise contains
two theorems about them. You might consider these theorems to be fairly
obvious, but it’s still good to formally prove them.

(a) Prove that a tangent to a circle is perpendicular to the radius at the
point of contact, as shown in Fig. 6.20(a). Hint: You can prove this by
making use of the left/right symmetry in the picture. Or you can see
what incorrect result the Pythagorean theorem would imply if the radius
and tangent weren’t perpendicular.

(b) From a given point 𝑃 outside a circle, draw the two tangent lines to the
circle. Prove that these two tangents have the same length, as shown in
Fig. 6.20(b).

Exercise 6.25 (This exercise is an extension of Example 6.4.) If we add a
third circle to the setup in Fig. 6.11, as shown in Fig. 6.21, what is its radius
𝑟 , in terms of the other two radii 𝑎 and 𝑏? Hint: Apply the result from
Example 6.4 multiple times, and use the fact that the segments along 𝐵𝐴 must
add up properly. Solving for 𝑟 in the equation you obtain will involve a few
algebraic steps.
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Exercise 6.26 (This exercise is very similar to Example 6.4.) Fig. 6.22 shows
a circle with radius 𝑏 centered at 𝐵. From an arbitrary point 𝐴 outside the
circle, the tangents (the dashed lines) are drawn; let their length be 𝑎. A circle
with radius 𝑎 is then drawn, centered at 𝐴. Find the length 𝑑 of the common
tangent to the two circles. Hint: You can quickly determine two sides of the
shaded triangle.
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6.6 Benefits of using letters

In Section 6.4 we solved the distance-to-horizon problem twice, first using numbers,
and then using letters (plugging in the numbers only at the end). The logic behind
the solutions was the same, but they looked a bit different on paper. The technique
of using letters instead of numbers is called solving a problem symbolically, which
basically just means you’re doing algebra (with letters) instead of arithmetic (with
numbers).

If you’re solving a problem where the quantities are specified numerically, it
is often advantageous to immediately change the numbers to letters (like replacing
6,400 m with 𝑅, and 100 m with ℎ in the horizon example). You can then solve the
problem in terms of the letters. After you obtain a symbolic answer, you can plug in
the actual numerical values to obtain a numerical answer. There are many benefits
of solving problems symbolically. And now that you have algebra at your fingertips,
you should take advantage of these benefits. Let’s list them out.

• It is quicker. It’s much easier to multiply an 𝑅 by an ℎ by writing them
down on a piece of paper next to each other, than it is to multiply their
numerical values on a calculator. If solving a problem involves five or ten
such operations, the time would add up if you performed all the operations on
a calculator.

• You are less likely to make a mistake. Numbers can get messy. It’s very
easy to mistype an 8 for a 9 in a calculator, but you’re probably not going to
miswrite a 𝑘 for an ℎ on a piece of paper. But even if you do, you’ll quickly
realize that it should be an ℎ. You certainly won’t just give up on the problem
and deem it unsolvable because no one gave you the value of 𝑘!

• You can do the problem once and for all. If someone comes along and
says, oops, the value of ℎ is actually 90 m instead of 100 m, then you won’t
need to do the whole problem again. You can simply plug the new value of
ℎ into your symbolic answer. That’s the beauty of working with letters. A
symbolic answer is valid for any value of the letter you might want to plug
in (well, subject to any approximations, like the ℎ ≪ 𝑅 one in the horizon
example).

• You can see the general dependence of your answer on the various
parameters (letters). For example, you can see that the 𝑑 =

√
2𝑅ℎ result

in Eq. (6.23) increases as either 𝑅 or ℎ increases. (For short, we say in this
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case that “𝑑 grows with 𝑅 and ℎ.”) Furthermore, you can see how 𝑑 grows
with 𝑅 and ℎ: It grows in a square-root manner for both. So if you increase ℎ

by a factor of 100, you can see only 10 times as far. Equivalently, the square
(instead of square root) behavior in the ℎ = 𝑑2/2𝑅 result in Eq. (6.28) tells us
that if we increase the distance 𝑑 by a factor of 10, then we need to increase ℎ

by a factor of 100. There is much more information contained in the symbolic
answer in Eq. (6.23) than in the numerical answer in Eq. (6.20).

As a bonus, symbolic answers nearly always look nice and pretty. Even in
cases like in Eq. (6.21) where the symbolic answer isn’t super pretty, there is
still a huge amount of information. Under the ℎ ≪ 𝑅 approximation, you
can say that the ℎ2 term is very small compared with the 2𝑅ℎ term, which
means that you can ignore it. This leaves you with the result in Eq. (6.23),
which is in fact super pretty.

• You can check special/extreme cases. (This is a long bullet point, since
it’s so important.) This benefit goes hand-in-hand with the previous “general
dependence” advantage. Since symbolic answers allow you to see the depen-
dence on the various letters, you can easily determine what your answer is
(or at least how it behaves) in various special or extreme cases. For example,
perhaps you can determine what your answer is when a particular letter equals
zero. Or when it is very large. Or when two letters are equal to each other.
And so on.

It is often the case that your intuition gives you information about what the
answer should be in special/extreme cases, even if you don’t have any intuition
about general values of the letters. You should take advantage of this. For
example, I have no clue how far I can see to the horizon from a height of,
say, 500 meters. But I do know for sure that I can see zero distance from
zero height. (It’s up to you whether you want to call this “intuition” or just an
obvious fact.) And indeed, the 𝑑 =

√
2𝑅ℎ result in Eq. (6.23) correctly equals

zero when ℎ = 0. If you accidentally replaced the ℎ here with 𝑅 and ended
up with an answer of

√
2𝑅2, or if you simply forgot the ℎ and ended up with√

2𝑅, then these answers don’t equal zero when ℎ = 0. So you’d know that
you needed to go back and check over your work. Likewise if you accidentally
wrote the result in Eq. (6.21) as, say,

√
2𝑅ℎ + 𝑅2.

You don’t need to be a magician,
Or cough up a hefty tuition.
When you check an extreme,
There’s a nice simple scheme:
Test your answer against intuition!
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In the other extreme, where ℎ gets very large, the 𝑑 =
√

2𝑅ℎ + ℎ2 result in
Eq. (6.21) also gets very large, which makes sense; 𝑑 correctly grows as ℎ

grows. (For large ℎ, the
√

2𝑅ℎ result in Eq. (6.23) isn’t valid, since it was
derived under the assumption that ℎ is much smaller than 𝑅. So we need to
use the

√
2𝑅ℎ + ℎ2 expression here.) In particular, if ℎ is much larger than 𝑅

(imagine that you’re on the moon, looking at the earth), then the 2𝑅ℎ term
is small compared with the ℎ2 term (it is smaller by the factor 2𝑅/ℎ). So to
a reasonable approximation, we can ignore the 2𝑅ℎ in

√
2𝑅ℎ + ℎ2, in which

case we’re left with 𝑑 ≈
√
ℎ2 = ℎ. This makes sense; from the moon, the

distance 𝑑 to the earth’s horizon is approximately equal to the distance ℎ to
the nearest point on the earth; see Fig. 6.23.
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Figure 6.23

A better intuitive approximation for 𝑑 is ℎ + 𝑅, due to the extra distance of
roughly 𝑅 to reach the horizon, as opposed to just the nearest point on the
earth. Equivalently, the long leg 𝑑 in Fig. 6.23 is approximately equal to
the hypotenuse ℎ + 𝑅 since the right triangle is very thin. (However, we’re
assuming 𝑅 is much smaller than ℎ, so the distinction between ℎ and ℎ+𝑅 isn’t
too important.) If you made a mistake and obtained a 𝑑 of, say,

√
2𝑅ℎ + 2ℎ2,

then ignoring the 2𝑅ℎ term would yield an approximate answer of
√

2ℎ. When
ℎ is large, this answer is much larger than either of our approximate intuitive
answers (ℎ or ℎ + 𝑅). It therefore can’t be correct. So you’d know to go back
and check over your work.

As another example, consider the 2𝐿𝑎 + 2𝑊𝑎 + 4𝑎2 result in Eq. (5.5) in
Example 5.1. In the special case where 𝑎 = 0, the frame has no width, so the
area clearly has to be zero. And the above answer is indeed zero when 𝑎 = 0.
If you made a mistake and accidentally replaced the first 𝑎 with an 𝐿, yielding
2𝐿2 + 2𝑊𝑎 + 4𝑎2, then you’d know this couldn’t be correct, because it equals
2𝐿2, instead of zero, when 𝑎 = 0.

Likewise for the 2𝜋𝑟𝑎 + 𝜋𝑎2 result in Eq. (5.17) for the area of a ring between
two circles. The answer must equal zero when the thickness 𝑎 of the ring
is zero, and the above expression correctly has this property. Furthermore,
when 𝑎 is very small, but not exactly zero, we can ignore the very small 𝑎2

term, in which case the expression reduces to 2𝜋𝑟𝑎. This is consistent with
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the fact that the area of the ring is (when 𝑎 is very small) essentially equal
to the circumference 2𝜋𝑟 times the thickness 𝑎, as we saw in Eq. (5.19). If
you made a mistake and dropped the 2 and obtained an answer of 𝜋𝑟𝑎 + 𝜋𝑎2,
then although the 𝑎 = 0 special case correctly yields zero, the 𝑎-small-but-
not-exactly-zero case doesn’t yield 2𝜋𝑟 times 𝑎. So you’d know to go back
and check over your work. No matter how many special cases you check that
are correct, if you obtain even just one that isn’t correct, then you know that
your answer must be wrong.

Another example of checking a special case is the 𝑎8 − 𝑏8 = (𝑎4 + 𝑏4) (𝑎2 +
𝑏2)(𝑎 + 𝑏) (𝑎 − 𝑏) factoring result in Eq. (4.38) in Example 4.6. In the special
case where 𝑎 = 𝑏, the lefthand side is zero. And the righthand side is correctly
also zero. (Likewise for the 𝑎 = −𝑏 special case; both sides are zero.) If you
forgot the 𝑎 − 𝑏 factor on the right, then the righthand side wouldn’t be zero,
so you’d know you made a mistake in your factoring. As another example, in
the solution to Example 6.4 we noted that the 𝐵𝐴 = 2

√
𝑎𝑏 result in Eq. (6.35)

correctly reduces to 2𝑎 in the special case where 𝑎 = 𝑏.

Bottom line: When you arrive at an answer after solving a problem, you
should always look for special/extreme cases to check. And you should do
this not because I’m telling you to(!), but rather because it will either (a) give
you the definite information that your answer is incorrect (in which case you
now know you need to go fix it), or (b) allow you to feel a little more confident
about your answer if you’ve checked a number of special/extreme cases and
they all agree with what you know must be true. Such is the case with the sum
formulas in Exercises 4.16, 4.17, and 4.18. After checking those formulas
for a number of small values of 𝑛, you will certainly be more confident that
they’re actually correct.

Of course, checking special/extreme cases will never tell you that your answer
is definitely correct. It’s quite possible that you’ve produced an incorrect
answer that just happens by luck to give the correct answer for a number of
special cases. However, as we’ve noted, looking at a special/extreme case
might very well tell you that your answer is definitely incorrect. If plugging
in a special value for a letter gives an answer that doesn’t agree with you
intuition, then (assuming that your intuition is correct) you have obtained the
irrefutable information that your answer is wrong. This seemingly dispiriting
information is actually a good thing, because as mentioned above, at least you
now know that you should go back and check over your work. This outcome
certainly beats pressing onward in blissful ignorance, thinking that you have
the correct answer, when in fact you don’t!
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• You can check units. In addition to checking special/extreme cases, sym-
bolic answers also allow you to easily check units. In the 𝑑 =

√
2𝑅ℎ result

in Eq. (6.23), both 𝑅 and ℎ have units of meters (or feet, or whatever unit of
length you’re working with). So the units of the 𝑑 are

√
m · m =

√
m2 = m,

which is correct. (In determining the units, we can ignore the numerical factor
2, since it doesn’t have any units.)

If you made a mistake and obtained an answer of
√

2𝑅/ℎ, with the ℎ in
the denominator, then you’d know it had to be wrong, because the units are√

m/m =
√

1 = 1, where the 1 here simply means that
√

2𝑅/ℎ doesn’t have
any units. This is incorrect, since 𝑑 must have units of meters. Similarly, if
you accidentally dropped the 𝑅 and obtained an answer of

√
2ℎ, this has units

of
√

m, which is incorrect.

Of course, the units will also work out (assuming you don’t make a mistake)
if you solve a problem in terms of numbers instead of letters, as we saw in
Eqs. (6.18)–(6.20). You therefore can (and should) also check the units of
your answer when working with numbers. But again, solving a problem in
terms of numbers instead of letters can often be a pain.

In summary, there are many significant benefits of using letters instead of num-
bers. And now that you’ve had lots of practice with algebra, you’re able to work
with letters at will. So take advantage of all of their wonderful benefits – they’ll
make your life much more pleasant!

They strove to be mighty trend setters,
And be free from numerical fetters.
Their motto on numbers?
“Reject what encumbers!
And bask in the glory of letters!”
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6.7 Exercise solutions

1. Plugging the 𝑎 and 𝑏 expressions from Eq. (6.8) into Eq. (6.1) gives

𝑎2 + 𝑏2 = (𝑚2 − 𝑛2) + (2𝑚𝑛)2

= (𝑚4 − 2𝑚2𝑛2 + 𝑛4) + 4𝑚2𝑛2

= 𝑚4 + 2𝑚2𝑛2 + 𝑛4

= (𝑚2 + 𝑛2)2

= 𝑐2, (6.49)

as desired.

2. Since 𝑐2 − 𝑏2 equals (𝑐 + 𝑏)(𝑐 − 𝑏), our goal is to show that this product equals
𝑎2. Plugging in the expressions for 𝑏 and 𝑐 from Eq. (6.8) gives

𝑐2 − 𝑏2 = (𝑐 + 𝑏)(𝑐 − 𝑏) (6.50)

=
(
(𝑚2 + 𝑛2) + 2𝑚𝑛

) (
(𝑚2 + 𝑛2) − 2𝑚𝑛

)
= (𝑚 + 𝑛)2(𝑚 − 𝑛)2 =

(
(𝑚 + 𝑛) (𝑚 − 𝑛)

)2 = (𝑚2 − 𝑛2)2 = 𝑎2,

as desired. In the last line, we used the difference-of-squares result in reverse.

3. We’ll just check a few of the triples here. The following relations are all true:

72 + 242 = 252 ⇐⇒ 49 + 576 = 625,
212 + 202 = 292 ⇐⇒ 441 + 400 = 841,
92 + 402 = 412 ⇐⇒ 81 + 1600 = 1681. (6.51)

4. From the Pythagorean theorem, the diagonal of 11.3-by-7 rectangle is√
11.32 + 72 =

√
176.7 = 13.3. (6.52)

And the diagonal of a 14.4-by-9.0 rectangle is√
14.42 + 92 =

√
288.4 = 17. (6.53)

For the first of these, people usually just call it a 13-inch screen, although
technically it’s 13.3.

There are many (an infinite number of) other shapes of rectangles, with different
width-to-height ratios (called the “aspect ratio”), that also have diagonals of 13.3
and 17. However, computers generally stick to a few common aspect ratios, like
16 : 10 (equivalently 8 : 5), 16 : 9, and 4 : 3.
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5. If you walk along two sides, the distance (in yards) is simply 100+53.33 = 153.33.
From the Pythagorean theorem, the length of the diagonal is√

1002 + 53.332 =
√

12,844 = 113.33. (6.54)

So you save 153.33 − 113.33 = 40 yards by walking diagonally. The diagonal
isn’t that much longer than the long side (113 vs. 100), so you save almost as
much as the short side (40 vs. 53).

Interestingly, if you’ve ever wondered how big an acre is, it’s a little less than
a football field. This follows from the fact that an acre is defined to be 43,560
square feet (1/640 of a square mile, as you can verify, since 1 mile = 5,280 feet),
and a football field (300 feet by 160 feet) is 48,000 square feet.

6. If 𝑛 = 1, the expressions in Eq. (6.8) become

𝑎 = 𝑚2 − 1, 𝑏 = 2𝑚, 𝑐 = 𝑚2 + 1. (6.55)

Since 𝑏/2 is simply𝑚, we see that 𝑎 and 𝑐 do indeed take the form of (𝑏/2)2±1 =
𝑚2 ± 1.

7. Starting with 𝑎 = 2𝑘 − 1 and following the given recipe, we first square 𝑎 to
obtain

𝑎2 = (2𝑘 − 1)2 = 4𝑘2 − 4𝑘 + 1. (6.56)

We then add or subtract 1 to obtain 4𝑘2 − 4𝑘 + 2 and 4𝑘2 − 4𝑘 . Finally, we divide
by 2 and label the results as 𝑐 and 𝑏:

𝑐 = 2𝑘2 − 2𝑘 + 1, 𝑏 = 2𝑘2 − 2𝑘. (6.57)

Our goal is to show that (𝑎, 𝑏, 𝑐) is a Pythagorean triple, that is, that 𝑎2+𝑏2 = 𝑐2.
The sum 𝑎2 + 𝑏2 equals

𝑎2 + 𝑏2 = (2𝑘 − 1)2 + (2𝑘2 − 2𝑘)2

= (4𝑘2 − 4𝑘 + 1) + (4𝑘4 − 8𝑘3 + 4𝑘2)
= 4𝑘4 − 8𝑘3 + 8𝑘2 − 4𝑘 + 1. (6.58)

We want to show that this equals 𝑐2, which is obtained by squaring the trinomial
for 𝑐 in Eq. (6.57). Using the trinomial result from Example 3.6, we obtain

(2𝑘2 − 2𝑘 + 1)2 =
(
(2𝑘2)2 + (−2𝑘)2 + 12

)
+ 2

(
(2𝑘2) (−2𝑘) + (2𝑘2) (1) + (−2𝑘)(1)

)
=

(
4𝑘4 + 4𝑘2 + 1

)
+

(
− 8𝑘3 + 4𝑘2 − 4𝑘

)
= 4𝑘4 − 8𝑘3 + 8𝑘2 − 4𝑘 + 1, (6.59)
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in agreement with the 𝑎2 + 𝑏2 sum in Eq. (6.58), as desired.

This calculation was a bit long, and there were many places where we could have
made a mistake. But we were careful, and it all worked out. The reward for the
effort was two long expressions that were exactly equal to each other. Perhaps
the most likely error in the calculation is forgetting to distribute the 2 into all
three terms in the parentheses in the second line of Eq. (6.59).

The purpose of this exercise was to get some algebra practice. If the goal were
instead to show as quickly as possible that 𝑎2+𝑏2 = 𝑐2 (once 𝑏 and 𝑐 are obtained
in Eq. (6.57)), then the best route would be to write this as 𝑎2 = 𝑐2 − 𝑏2, and
then use the difference-of-squares result. This method is much quicker, as you
can verify!

Note that our starting 𝑎 = 2𝑘 − 1 expression, along with the expressions for 𝑐
and 𝑏 in Eq. (6.57), are the same as the expressions for 𝑎, 𝑏, and 𝑐 in Eq. (6.10)
(which came from Eq. (6.8)), with 𝑚 replaced by 𝑘 . So we already knew from
our original proof in Exercise 6.1 that the 𝑎2 + 𝑏2 = 𝑐2 relation holds. But again,
the purpose of this exercise was to verify that 𝑎2 + 𝑏2 = 𝑐2 holds by doing some
algebra.

8. The overall square has side length 𝑎 + 𝑏, so its area is (𝑎 + 𝑏)2. The area of the
smaller square is 𝑐2. And the area of each of the four triangles is 𝑎𝑏/2 (since
each one has a base of 𝑎 and a height of 𝑏, or vice versa). So the statement that
the overall area equals the sum of the areas of the sub-regions is

(𝑎 + 𝑏)2 = 4 · 𝑎𝑏
2

+ 𝑐2

=⇒ 𝑎2 +���2𝑎𝑏 + 𝑏2 =���2𝑎𝑏 + 𝑐2

=⇒ 𝑎2 + 𝑏2 = 𝑐2, (6.60)

as desired. The third line is obtained by canceling the 2𝑎𝑏 terms on each side
of the second line (or more precisely, by subtracting 2𝑎𝑏 from both sides of the
second line, as explained in the second terminology bullet point on page 163).

9. The area of the overall square is 𝑐2, and the area of the smaller square is (𝑏− 𝑎)2.
The area of each of the four triangles is 𝑎𝑏/2 (since each one has a base of 𝑎 and
a height of 𝑏, or vice versa), So the statement that the overall area equals the sum
of the areas of the sub-regions is

𝑐2 = 4 · 𝑎𝑏
2

+ (𝑏 − 𝑎)2

=���2𝑎𝑏 + (𝑏2 −���2𝑎𝑏 + 𝑎2)
= 𝑏2 + 𝑎2, (6.61)

as desired.
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10. Fig. 6.24 shows the rearrangement. The white squares that are formed have side
lengths 𝑎 and 𝑏, because those are the legs of the four shaded rectangles in the
original figure. So the area of the white region is indeed 𝑎2 + 𝑏2.

Note that we don’t even need to know that the area of a triangle is 𝑏ℎ/2 here, as
we did in the first two proofs above. All we need to know is that the area of a
square is the side length squared.

bb

b

c b2

a2

c2

ba

a

a

a

Figure 6.24

11. We just need to move the two dark-shaded triangles in Fig. 6.25 as indicated. (It
doesn’t matter which one goes where, since they’re identical.) The total shaded
area (light and dark) is the same in the two figures. And since this area is 𝑎2 + 𝑏2

in the left figure and 𝑐2 in the right, it follows that 𝑎2 + 𝑏2 = 𝑐2.
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Figure 6.25

This proof and the preceding one show that sometimes a proof doesn’t require
any words (even though we did use some). A simple picture by itself can do the
trick!
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The proof she gave somehow succeeded
(a bit odd, given how it proceeded).
But the picture she drew
Soon convinced us it’s true
That in some cases words are not needed!

12. For convenience in Fig. 6.26, let ∠𝐴 be labeled as𝛼, as shown. Then ∠𝐵 = 90◦−𝛼
because ∠𝐴𝐶𝐵 = 90◦, and the three angles in triangle 𝐴𝐵𝐶 must add up to 180◦.

a
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D
a2/c

ab/c
b2/c

α

α

b

90 − α

c
90 − α

Figure 6.26

Similarly, in right triangle 𝐴𝐶𝐷, we have ∠𝐴𝐶𝐷 = 90◦−𝛼 because ∠𝐴𝐷𝐶 = 90◦,
and the three angles in triangle 𝐴𝐶𝐷 must add up to 180◦.

Finally, due to the original right angle at 𝐶, we have

∠𝐷𝐶𝐵 = 90◦ − ∠𝐷𝐶𝐴 = 90◦ − (90◦ − 𝛼) = 𝛼. (6.62)

You can also deduce this 𝛼 angle by demanding that the angles in triangle 𝐶𝐵𝐷

add up to 180◦.

We therefore see that all three of the triangles 𝐴𝐵𝐶, 𝐴𝐶𝐷, and𝐶𝐵𝐷 have angles
of 90◦, 𝛼, and 90◦ − 𝛼. Hence they are all similar, as we wanted to show.

We can now use the similarity of the triangles to write down some useful ratios.
In the overall triangle 𝐴𝐵𝐶, the short leg 𝑎 is 𝑎/𝑐 times the hypotenuse 𝑐, and
the long leg 𝑏 is 𝑏/𝑐 times the hypotenuse 𝑐. Since the other two smaller right
triangles are similar to the overall one, they must have these same ratios. That
is, in each triangle, the short leg is 𝑎/𝑐 times the hypotenuse, and the long leg is
𝑏/𝑐 times the hypotenuse.

So in the smallest triangle, the short leg 𝐵𝐷 is 𝑎/𝑐 times the hypotenuse, which
is 𝐶𝐵 = 𝑎. So 𝐵𝐷 = (𝑎/𝑐)𝑎 = 𝑎2/𝑐, as shown.

And in the medium triangle, the long leg 𝐴𝐷 is 𝑏/𝑐 times the hypotenuse, which
is 𝐴𝐶 = 𝑏. So 𝐴𝐷 = (𝑏/𝑐)𝑏 = 𝑏2/𝑐, as shown.
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We can now use the fact that 𝐵𝐷 + 𝐴𝐷 equals the hypotenuse 𝑐 of the overall
triangle. This gives

𝐵𝐷 + 𝐴𝐷 = 𝑐 =⇒ 𝑎2

𝑐
+ 𝑏2

𝑐
= 𝑐 =⇒ 𝑎2 + 𝑏2 = 𝑐2, (6.63)

where this last equation is obtained from the middle one by multiplying both
sides by 𝑐.

Remark: We can also find the length of the altitude, 𝐶𝐷, in various different
ways. In the smallest triangle, the long leg 𝐶𝐷 is 𝑏/𝑐 times the hypotenuse,
which is 𝐶𝐵 = 𝑎. So 𝐶𝐷 = (𝑏/𝑐)𝑎 = 𝑎𝑏/𝑐, as shown.

Alternatively, in the medium triangle, the short leg 𝐶𝐷 is 𝑎/𝑐 times the hy-
potenuse, which is 𝐴𝐶 = 𝑏. So 𝐶𝐷 = (𝑎/𝑐)𝑏 = 𝑎𝑏/𝑐.

Alternatively again, we can find𝐶𝐷 by writing down two valid 𝑏ℎ/2 expressions
for the area of the overall triangle. We can consider 𝑏 to be the base and 𝑎 to
be the height. Or we can consider 𝑐 to be the base and 𝐶𝐷 to be the height.
Equating the two resulting expressions for the area gives

𝑏𝑎

2
=
𝑐(𝐶𝐷)

2
=⇒ 𝑎𝑏

𝑐
= 𝐶𝐷 , (6.64)

where the second equation is obtained from the first by multiplying both sides
by 2/𝑐. ♣

13. Let the three triangles (overall, medium, and smallest) be labeled 𝑇1, 𝑇2, and 𝑇3,
respectively. The hypotenuse of 𝑇1 is 𝑐, and the hypotenuse of 𝑇2 is 𝑏. So 𝑇2 is
obtained by scaling down 𝑇1 by the factor 𝑓 = 𝑏/𝑐. The results from Section 5.5
then tell us that the areas are related by 𝐴2 = 𝑓 2𝐴1 =⇒ 𝐴2 = (𝑏/𝑐)2𝐴1.

Similarly, the hypotenuse of 𝑇3 is 𝑎, so 𝑇3 is obtained by scaling down 𝑇1 by
the factor 𝑓 = 𝑎/𝑐. The areas are therefore related by 𝐴3 = 𝑓 2𝐴1 =⇒ 𝐴3 =
(𝑎/𝑐)2𝐴1.

The 𝐴2 + 𝐴3 = 𝐴1 relation for areas then becomes

𝑏2

𝑐2 𝐴1 +
𝑎2

𝑐2 𝐴1 = 𝐴1 =⇒ 𝑏2

𝑐2 + 𝑎2

𝑐2 = 1 =⇒ 𝑏2 + 𝑎2 = 𝑐2, (6.65)

as desired. The last equation is obtained by dividing both sides of the first
equation by 𝐴1, and then multiplying both sides of the second equation by 𝑐2.
(Or you can just multiply by 𝑐2/𝐴1 in one step.)
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14. The dark-shaded triangles 𝐴1𝐵𝐴 and 𝐶𝐵𝐶1 in Fig. 6.7 both have sides with
lengths 𝑎 and 𝑐. So if we can show that the angles ∠𝐴1𝐵𝐴 and ∠𝐶𝐵𝐶1 between
these common sides are equal, then by the SAS postulate we’ll know that the two
triangles are congruent. These angles are indeed equal because

∠𝐴1𝐵𝐴 = ∠𝐴1𝐵𝐶 + ∠𝐶𝐵𝐴 = 90◦ + ∠𝐶𝐵𝐴,

and ∠𝐶𝐵𝐶1 = ∠𝐴𝐵𝐶1 + ∠𝐶𝐵𝐴 = 90◦ + ∠𝐶𝐵𝐴. (6.66)

So both angles are 90◦ plus ∠𝐶𝐵𝐴, and hence are equal. Triangles 𝐴1𝐵𝐴 and
𝐶𝐵𝐶1 are therefore congruent by the SAS postulate. So they have the same area.

Note: Another (quick) way of seeing why triangles 𝐴1𝐵𝐴 and 𝐶𝐵𝐶1 are con-
gruent is to imagine rotating triangle 𝐶𝐵𝐶1 clockwise by 90◦ around point 𝐵. It
will turn into triangle 𝐴1𝐵𝐴.

All of the above reasoning holds with the light-shaded triangles too, so they are
also congruent and hence have the same area.

We now claim that the area of triangle 𝐴1𝐵𝐴 is half the area of the square with
side 𝑎. This is true because in the standard (1/2)𝑏ℎ expression for the area of a
triangle, we can pick the base to be the 𝐴1𝐵 = 𝑎 side, in which case the altitude
from 𝐴 to the (extension of the) 𝐴1𝐵 side has length 𝑎, as shown in Fig. 6.27(a).
So the area of triangle 𝐴1𝐵𝐴 is (1/2)𝑏ℎ = (1/2)𝑎 · 𝑎 = 𝑎2/2, which is indeed
half the area of the square with side 𝑎.
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Figure 6.27

We also claim that the area of triangle𝐶𝐵𝐶1 is half the area of the 𝑅1 rectangular
part of the square with side 𝑐 that is above/left of the dashed line. This is true
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because in the standard (1/2)𝑏ℎ expression for the area of a triangle, we can
pick the base to be the 𝐵𝐶1 = 𝑐 side, in which case the altitude from 𝐶 to the
(extension of the) 𝐵𝐶1 side has the length 𝑥 shown in Fig. 6.27(b). So the area
of triangle 𝐶𝐵𝐶1 is (1/2)𝑏ℎ = (1/2)𝑐 · 𝑥 = 𝑐𝑥/2, which is indeed half the area
of the 𝑅1 rectangle with sides 𝑐 and 𝑥.

The preceding two paragraphs, combined with the fact that triangles 𝐴1𝐵𝐴 and
𝐶𝐵𝐶1 are congruent, tell us that 𝑎2/2 = 𝑐𝑥/2, which (after multiplying both
sides by 2) means that 𝑎2 = 𝑐𝑥. So the 𝑐𝑥 area of the 𝑅1 rectangle is simply 𝑎2.

We can now repeat (or rather, just imagine repeating) the entire process above,
but with the light-shaded congruent triangles. The result will be that the area of
the 𝑅2 rectangular part of the square with side 𝑐 that is below/right of the dashed
line equals 𝑏2.

Finally, since the 𝑎2 and 𝑏2 areas of the 𝑅1 and 𝑅2 rectangles add up to the 𝑐2

area of the square with side 𝑐, we conclude that 𝑎2 + 𝑏2 = 𝑐2, as desired.

The above proof might seem long, but here’s the quick summary: Triangles
𝐴1𝐵𝐴 and 𝐶𝐵𝐶1 are congruent because they can be rotated into each other.
So they have the same area. Fig. 6.27 then shows that these triangles have
(with appropriately chosen bases) the same heights as the 𝑎2 square and the 𝑅1
rectangle. This square and rectangle therefore also have the same area (both
twice the common triangle area). So the 𝑅1 rectangle has area 𝑎2. Likewise, the
𝑅2 rectangle has area 𝑏2. Finally, the 𝑅1 and 𝑅2 areas add up to 𝑐2.

15. In terms of 𝑅, plugging ℎ = 𝑅/16 into Eqs. (6.21) and (6.23) gives

𝑑exact =
√

2𝑅ℎ + ℎ2 =
√

2𝑅(𝑅/16) + (𝑅/16)2

=
√
𝑅2(1/8 + 1/256) = 𝑅

√
0.1289 = (0.3590)𝑅,

𝑑approx =
√

2𝑅ℎ =
√

2𝑅(𝑅/16)
=

√
𝑅2(1/8) = 𝑅

√
0.125 = (0.3536)𝑅. (6.67)

With 𝑅 = 6,400 km, these results become

𝑑exact = (0.3590)(6,400 km) = 2298 km,

𝑑approx = (0.3536)(6,400 km) = 2263 km. (6.68)

The difference in these answers is only 35 km, which is about 0.015 (equivalently,
1.5%) of the exact 2298 km distance. So the approximation in Eq. (6.23) is still
very good, even for the large (but still small compared with 𝑅) ℎ value of the
Space Station.
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16. The setup is shown in Fig. 6.28. The desired maximum depth is ℎ, and the total
distance from Boston to NYC is 𝑑 = 300 km.

There is technically an ambiguity about whether the 300 km is the straight-line
distance or the curved distance along the surface of the earth. But it doesn’t
matter since these two distances are essentially the same. If the two cities were
significantly farther apart, then we would have to worry about this issue. The
straight-line distance is the useful one in Fig. 6.28, so if (as would be the case
in real life) we’re given the curved distance, the first thing we’d have to do
is somehow calculate the straight-line distance. But there’s no need to do that
here, since the two distances are indistinguishable (because 300 km is sufficiently
small compared with the 6,400 km radius of the earth). It’s possible to show (with
trigonometry; see Chapter 16) that the two distances differ by only about 0.01%.

The right triangle in Fig. 6.28 has legs 𝑑/2 and 𝑅 − ℎ, and hypotenuse 𝑅. So the
Pythagorean theorem gives

(𝑑/2)2 + (𝑅 − ℎ)2 = 𝑅2 =⇒ (𝑑/2)2 = 𝑅2 − (𝑅 − ℎ)2

=⇒ 𝑑2/4 =��𝑅
2 − (��𝑅2 − 2𝑅ℎ + ℎ2). (6.69)

As we did in the distance-to-horizon problem in the text, we can ignore the ℎ2

term, because it is negligible compared with the 2𝑅ℎ term. We’re then left with

𝑑2

4
= 2𝑅ℎ =⇒ ℎ =

𝑑2

8𝑅
, (6.70)

where we have divided both sides by 2𝑅 (and then switched sides). Plugging in
the Boston-NYC distance of 300 km gives

ℎ =
(300 km)2

8(6,400 km) ≈ 1.75 km ≈ 1.1 miles. (6.71)

Is this answer larger or smaller than what you expected? Personally, my first
guess was that the tunnel would be deeper than this. But in retrospect, the earth
is nearly flat on the scale of 300 km, so this small value of ℎ is quite believable.
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Note that our earlier result for the tower height ℎ in Eq. (6.28) is 4 times the
result for the depth ℎ in Eq. (6.70). So if you build a tower in Boston tall enough
to see NYC (the ground there, not just the skyline), and if you also dig a tunnel
between the two cities, then the tower will be 4 times as tall as the tunnel is
deep. Since we just found that the tunnel will be 1.75 km deep, the tower will be
4(1.75 km) = 7 km (or 4.3 miles) tall.

17. The setup is shown in Fig. 6.29. In the bottom face of the box, we have a right
triangle with legs 𝑎 and 𝑏, so our first application of the Pythagorean theorem
gives the hypotenuse 𝑑1 as

𝑎2 + 𝑏2 = 𝑑2
1 =⇒ 𝑑1 =

√
𝑎2 + 𝑏2. (6.72)

This is the length of a diagonal of the bottom (or top) face of the box, not the
whole box itself.

a

d1

d2

b

c

Figure 6.29

We now note that we have another right triangle – the vertical one with legs 𝑑1
and 𝑐, and hypotenuse 𝑑2. So our second application of the Pythagorean theorem
gives

𝑑2
1 + 𝑐2 = 𝑑2

2 . (6.73)

Substituting the value of 𝑑2
1 from Eq. (6.72) into this equation gives

(𝑎2 + 𝑏2) + 𝑐2 = 𝑑2
2 =⇒ 𝑑2 =

√
𝑎2 + 𝑏2 + 𝑐2. (6.74)

This is the desired length of the diagonal of the box. This expression is symmetric
in 𝑎, 𝑏, and 𝑐, because (just as with the Pythagorean theorem) it can’t matter
which of the three dimensions you arbitrarily choose to label as 𝑎, or 𝑏, or
𝑐. Said in another way, if your first application of the Pythagorean theorem
instead involved one of the side faces, you would still end up with the same final
𝑑2 =

√
𝑎2 + 𝑏2 + 𝑐2 result.
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18. The key is to unroll the cylinder into a flat rectangle, as shown in Fig. 6.30. The
width of the rectangle is the 𝜋𝑑 circumference of the cylinder, and the diagonal
𝐿 is the desired length of the staircase. (Yes, the sides in Fig. 6.30 are in fact
in the correct proportion, for the given cylinder shown in Fig. 6.15. The 𝜋𝑑

circumference is longer than you might think.)

h

L

πd

Figure 6.30

Applying the Pythagorean theorem to the right triangle in the figure gives the
length 𝐿 of the staircase as

(𝜋𝑑)2 + ℎ2 = 𝐿2 =⇒ 𝐿 =
√
𝜋2𝑑2 + ℎ2. (6.75)

This is the answer in terms of the general lengths 𝑑 and ℎ. But in the special case
where 𝑑 = ℎ, we have

𝐿 =
√
𝜋2ℎ2 + ℎ2 =

√
(𝜋2 + 1)ℎ2 =

√
𝜋2 + 1 · ℎ ≈ (3.3)ℎ. (6.76)

We see that the length 𝐿 of the staircase is only slightly longer than the circum-
ference 𝜋𝑑. This is because the long leg of the right triangle, 𝜋ℎ, is significantly
longer than the short leg, ℎ.
We can check our general result in Eq. (6.75) for some special cases. If ℎ = 0,
then the cylinder has zero height, so the “staircase” is just a horizontal circle. And
Eq. (6.75) correctly gives the

√
𝜋2𝑑2 + 02 = 𝜋𝑑 circumference of the circle. In the

other extreme, if 𝑑 = 0, the cylinder is just a vertical segment, so the “staicrase”
is a vertical ladder. And Eq. (6.75) correctly gives the

√
𝜋2 · 02 + ℎ2 = ℎ height

of the segment.

19. If the pendulum is presently 𝑦 above the lowest point, then it is 𝑅 − 𝑦 below the
pivot (the center of the circular arc), as shown in Fig. 6.31. So the sides of the
right triangle in the figure are 𝑥, 𝑅 − 𝑦, and 𝑅. The Pythagorean theorem then
gives

𝑥2 + (𝑅 − 𝑦)2 = 𝑅2 =⇒ 𝑥2 = 𝑅2 − (𝑅 − 𝑦)2

=⇒ 𝑥2 =��𝑅
2 − (��𝑅2 − 2𝑅𝑦 + 𝑦2)

=⇒ 𝑥2 = 2𝑅𝑦 − 𝑦2. (6.77)
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R − y

y

x

R

Figure 6.31

We’ll now make the approximation where we ignore the 𝑦2 term since it is much
smaller than the 2𝑅𝑦 term. (𝑦2 is 𝑦/2𝑅 times 2𝑅𝑦, and this factor of 𝑦/2𝑅 is
small, since we’re assuming that 𝑦 is much smaller than 𝑅.) We’re therefore left
with

𝑥2 ≈ 2𝑅𝑦 =⇒ 𝑦 ≈ 𝑥2

2𝑅
. (6.78)

This problem is just an upside-down version of the tunnel setup in Exercise 6.16,
with 𝑑/2 replaced with 𝑥, and ℎ replaced with 𝑦. The pendulum moves in the
arc of a circle with radius 𝑅, just like the surface of the earth took the shape of a
circle with radius 𝑅 in Exercise 6.16.

The 𝑥2 in Eq. (6.78) means that the pendulum’s motion takes (approximately,
assuming 𝑦 is much smaller than 𝑅) the form of a parabola. Parabolas are
functions of the form 𝑦 = 𝐴𝑥2. We’ll talk about these, along with other types of
functions, in Chapter 8. What we’ve shown in this exercise is that a circle looks
like a parabola, at least near the bottom point. The circle/parabola starts out flat
and then gradually gets steeper. If you double the 𝑥 value from, say, 𝑎 to 2𝑎,
then the 𝑦 value quadruples from 𝑎2/2𝑅 to (2𝑎)2/2𝑅 = 4 · 𝑎2/2𝑅. Similarly,
increasing 𝑥 by a factor of 10 increases 𝑦 by a factor of 102 = 100 (assuming 𝑦

is still much smaller than 𝑅).

20. Since we’ve chosen the radii of the large circles be 1, the hypotenuse of the right
triangle has length 1 + 𝑟. And the vertical leg has length 1 − 𝑟, because its top
and bottom ends are at heights of, respectively, 1 and 𝑟 above the bottom line.
The right triangle therefore has legs 1 and 1 − 𝑟, and hypotenuse 1 + 𝑟.

Since the side lengths of 1− 𝑟, 1, and 1 + 𝑟 are equally spaced (with the common
spacing being 𝑟), we can simply invoke the result from Example 6.3, which tells
us that the sides are in the ratio of 3 : 4 : 5, as desired. So we’re done. But let’s
work it out again anyway. The Pythagorean theorem applied to the right triangle
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in Fig. 6.17 gives

1 + (1 − 𝑟)2 = (1 + 𝑟)2 =⇒ 1 = (1 + 𝑟)2 − (1 − 𝑟)2

=⇒ 1 = (AA1 + 2𝑟 + ��𝑟2) − (AA1 − 2𝑟 + ��𝑟2)
=⇒ 1 = 4𝑟 =⇒ 𝑟 = 1/4. (6.79)

The legs of the right triangle are then 1 − 𝑟 = 3/4, and 1. And the hypotenuse is
1 + 𝑟 = 5/4. Scaling all of these up by a factor of 4 gives sides of 3, 4, and 5, as
desired.

If you instead start with a general radius 𝑅 for the large circles, instead of 1, you
will (as you can verify) end up with sides of 3𝑅/4, 𝑅, and 5𝑅/4, which are again
in the ratio of 3 : 4 : 5. The value of 𝑟 is different (𝑅/4 instead of 1/4), but the
3 : 4 : 5 ratio isn’t affected.

21. This exercise is very similar to Example 6.2. Fig. 6.32 shows a 30◦ pie piece
(just the triangle, without the rounded end). Letting the radius be 1 as usual, the
30-60-90 triangle in the left part of the pie piece has legs with lengths 1/2 and√

3/2 (from Section 5.4), as shown.

2

s

1

30

60

3/23/

2/

1 − 

1 

Figure 6.32

Since the bottom side of the pie piece has length 1 (because it’s also a radius),
a length 1 −

√
3/2 is left for the short segment on the right side, as shown. The

Pythagorean theorem applied to the right triangle in the right part of the pie piece
then gives the dodecagon’s side length 𝑠 as

𝑠2 = (1/2)2 +
(
1 −

√
3/2

)2 = 1/4 +
(
1 −

√
3 + 3/4

)
= 2 −

√
3. (6.80)

So 𝑠 =
√

2 −
√

3 ≈ 0.518. Multiplying this by 12 to find the perimeter of
the dodecagon gives 𝑃dodec ≈ 6.21. The 𝐶circ > 𝑃dodec statement that the
circumference of the circle is greater than the perimeter of the dodecagon is then
2𝜋 > 6.21, or equivalently 𝜋 > 3.1, after dividing by 2. This value is about 99%
of the true 𝜋 ≈ 3.14 value, so the approximation is a very good one.
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22. (a) The upper-left right triangle in Fig. 6.18 has hypotenuse 1 and vertical leg
𝑎𝑛/2. So the Pythagorean theorem gives the horizontal leg 𝑥 as

𝑥2 + (𝑎𝑛/2)2 = 12 =⇒ 𝑥2 = 1 − 𝑎2
𝑛/4 =⇒ 𝑥 =

√
1 − 𝑎2

𝑛/4. (6.81)

Since 𝑥 + 𝑦 equals the radius 1, we have 𝑦 = 1 − 𝑥 = 1 −
√

1 − 𝑎2
𝑛/4.

We can now use the upper-right right triangle in Fig. 6.18 to solve for the
hypotenuse 𝑎2𝑛. The legs are 𝑎𝑛/2 and 𝑦 (which we just found), so the
Pythagorean theorem gives

𝑎2
2𝑛 = (𝑎𝑛/2)2 + 𝑦2

= (𝑎𝑛/2)2 +
(
1 −

√
1 − 𝑎2

𝑛/4
)2

=�
��𝑎2
𝑛/4 +

(
1 − 2

√
1 − 𝑎2

𝑛/4 + (1 −�
��𝑎2
𝑛/4)

)
= 2 − 2

√
1 − 𝑎2

𝑛/4

=⇒ 𝑎2𝑛 =

√
2 − 2

√
1 − 𝑎2

𝑛/4 , (6.82)

as desired. This isn’t the cleanest answer, but as least it’s an answer. If we
know 𝑎𝑛, we just need to plug it into this expression, and 𝑎2𝑛 pops out.

(b) Table 6.3 shows the 𝑎𝑛 values for various 𝑛’s (powers of 2), along with the
resulting estimate of 𝜋 (a lower bound), and also the ratio of this estimate to
the true value of 𝜋. The perimeter of the 𝑛-gon is 𝑛 ·𝑎𝑛, so the𝐶circ > 𝑃𝑛-gon
statement is 2𝜋 · 1 > 𝑛𝑎𝑛 =⇒ 𝜋 > 𝑛𝑎𝑛/2. This is the estimate of 𝜋 in the
third column. Each 𝑎𝑛 in the table is obtained from the preceding one
by plugging that one into Eq. (6.82). Note that the 𝑎8 =

√
2 −

√
2 value

correctly agrees with the result in Example 6.2.

𝑛 𝑎𝑛 𝑛𝑎𝑛/2 (𝑛𝑎𝑛/2)/𝜋
2 2 2 0.64
4

√
2 2

√
2 = 2.83 0.90

8
√

2 −
√

2 4
√

2 −
√

2 = 3.06 0.974
16 0.39018064 3.1214 0.9936
32 0.19603428 3.13655 0.9984
64 0.09813535 3.14033 0.99960
128 0.04908246 3.141277 0.99990
256 0.02454308 3.141514 0.999975

Table 6.3: Estimates of 𝜋 using 𝑛-gons, where 𝑛 is a power of 2
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It is in fact legal to start the table with the 𝑛 = 2 case, as we have done. Of
course, a 2-sided polygon isn’t much of a polygon. It’s the back-and-forth
diameter we encountered in Exercise 5.23, so it has “sides” of 𝑎2 = 2.
Plugging this into Eq. (6.82) correctly gives the 𝑎4 =

√
2 side of a square.

However, if you’re uncomfortable using the 𝑛 = 2 case, you can simply start
the table with the 𝑛 = 4 case.

Remarks: It’s possible to write the 𝑎𝑛 lengths in terms of square roots for
𝑛 = 16 and higher, but the expressions become long and tedious. So we
opted to use the (approximate) decimal forms in the table. In most cases, we
didn’t actually need to keep as many digits as we did, as far as a specific 𝑎𝑛
is concerned. However, the accuracy of any given 𝑎𝑛 affects the accuracy
of higher 𝑎𝑛’s. And the higher the 𝑛, the more digits we need to know. For
example, for 𝑛 = 16 our 𝑛𝑎𝑛/2 estimate for 𝜋 differs from the actual value
of 𝜋 (≈ 3.14159) in the second digit after the decimal point, whereas for
𝑛 = 256 it differs in the fifth digit.
Fig. 6.33 shows a 32-gon, which is very close to a smooth circle. The
0.9984 (equivalently, 99.84%) ratio in Table 6.3 for 𝑛 = 32 seems quite
reasonable, since the perimeter of the 32-gon is essentially equal to the
circumference of the circle in which it is inscribed. We haven’t drawn the
circle, because it would be nearly indistinguishable from the 32-gon.

(n = 32)

Figure 6.33

An inspection of Table 6.3 shows that the error (the difference from 1) in
the (𝑛𝑎𝑛/2)/𝜋 value in the last column decreases by a factor of 4 from one 𝑛
to the next (except for the first few small values of 𝑛). For example, 0.9984
differs from 1 by 0.0016, and then 0.99960 differs from 1 by 0.0004, and
then 0.99990 differs from 1 by 0.0001. Each of these differences is 1/4
of the previous one. To prove that this pattern holds in general, we would
need more machinery than we have at our disposal, so we’ll just accept it
as an interesting fact here.
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When producing a 𝜋 estimation,
Use 𝑛-gons without hesitation,
Because doubling your 𝑛,
Yet again, and again,
Yields improvement with each iteration!

You can also make another table of doubled 𝑛 values, but now starting with
𝑛 = 3. The 𝑛 values will be 3, 6, 12, 24, 48, and so on. From Exercise 5.23,
the 𝑎3 side of an equilateral triangle (assuming a circle radius of 1, as usual)
is 𝑎3 =

√
3. You can quickly show that plugging this into Eq. (6.82) correctly

gives the 𝑎6 = 1 side of a hexagon. And then plugging this into Eq. (6.82)
reproduces the 𝑎12 =

√
2 −

√
3 dodecagon result from Exercise 6.21. ♣

23. (a) The two sub-triangles in Fig. 6.34 are indeed isosceles, because they each
have two sides equal to the radius 𝑟 . Let the angle at 𝐴 be 𝛼. Then because
triangle 𝐴𝐷𝐶 is isosceles, we have the other angle 𝛼 shown.

C

A
r

α β

βα

r

r

B
D

Figure 6.34

Likewise, let the angle at 𝐵 be 𝛽. Then because triangle 𝐵𝐷𝐶 is isosceles,
we have the other angle 𝛽 shown. The three angles in the overall triangle
are then ∠𝐴 = 𝛼, ∠𝐵 = 𝛽, and ∠𝐶 = 𝛼 + 𝛽. The sum of these angles must
be 180◦, so

𝛼 + 𝛽 + (𝛼 + 𝛽) = 180◦ =⇒ 2𝛼 + 2𝛽 = 180◦

=⇒ 𝛼 + 𝛽 = 90◦. (6.83)

The lefthand side of this last relation is simply ∠𝐶, so we have shown that
∠𝐶 = 90◦, as desired. This 90◦ result for ∠𝐶 is a special case of a more
general theorem we’ll prove in Chapter 11.

Remark: The above ∠𝐶 = 90◦ result provides a quick answer to the
question of how to classify all the different possible shapes of rectangles
that have a specified length 𝐿 for their diagonal. We can do this by drawing
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a circle with diameter 𝐿. If we draw the horizontal diameter, along with
any other arbitrary diameter (the dashed lines in Fig. 6.35), we’ll end
up with a rectangle, because the result of this exercise tells us that the
horizontal diameter leads to two right angles (the solid little boxes shown),
and the titled dashed diameter leads to two others (the dashed little boxes).
Depending on how tilted the dashed diameter is, we can produce a thin
rectangle like the one on the left, or the “fat” square on the right.

L L

Figure 6.35

Exercise 6.4 dealt with a computer screen with a 13.3 inch (or 17 inch)
diagonal. We now see how to generate all possible rectangular screens with
a 13.3 inch diagonal. However, probably no one is going to want to use a
screen as squat as the left rectangle in Fig. 6.35. In the old days, screens
were more square-ish, but they’ve gotten wider (although not as wide as
the left one in Fig. 6.35) as the years have gone by. ♣

(b) In Fig. 6.36, let the sides of right triangle 𝐴𝐵𝐶 be 2𝑎, 2𝑏, and 2𝑐, for
convenience (so that we won’t have a bunch a 1/2 factors floating around).
Let 𝐷 be the midpoint of the hypotenuse, so that 𝐵𝐷 = 𝐷𝐴 = 𝑐. Draw the
vertical segment 𝐷𝐸 . Then triangle 𝐴𝐷𝐸 is similar to triangle 𝐴𝐵𝐶 (they
both have a right angle along with the common angle at 𝐴, which means
that their third angles are also the same), and it is half a large (since its
𝐴𝐷 = 𝑐 hypotenuse is half the 𝐴𝐵 = 2𝑐 hypotenuse). So 𝐷𝐸 = 𝑎 (half of
𝐵𝐶), and 𝐴𝐸 = 𝑏 (half of 𝐴𝐶). This leaves 𝑏 for 𝐶𝐸 , as shown. From the
Pythagorean theorem applied to triangles 𝐴𝐷𝐸 and 𝐶𝐷𝐸 , the lengths of
𝐴𝐷 and 𝐶𝐷 are both

√
𝑎2 + 𝑏2 (which equals 𝑐). So they are equal (and

hence also equal to 𝐷𝐵), as desired. 𝐷 is therefore the center of the circle
passing through 𝐴, 𝐵, and 𝐶. And since any chord of a circle containing
the center is a diameter, we see that 𝐴𝐵 is a diameter, as we wanted to show.
To succinctly summarize the results in parts (a) and (b) of this exercise:
If a triangle is inscribed in a circle, then (a) If one side is a diameter,
then the triangle is right, and (b) If the triangle is right, then one side
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(the hypotenuse) is a diameter. These two statements are the converses
(reverses) of each other.

Remark: We just showed in part (b) that for a given hypotenuse length,
the midpoint of the hypotenuse is always the same distance (half the length
of the hypotenuse) from the right angle, no matter what the lengths of the
legs are. It doesn’t matter if the right triangle is a “fat” 45-45-90 one,
or a thin 1-89-90 one. As long as the hypotenuse has a fixed length, the
distance from the midpoint to the right angle is always the same (half the
hypotenuse).
This fact is relevant to the famous “sliding ladder” problem. A ladder slides
down a wall, as shown in Fig. 6.37, always maintaining contact with the
wall and the floor. What is the path taken by the midpoint? Since the
midpoint of the ladder (the midpoint of the hypotenuse; the dots shown) is
always the same distance from the corner, we see that the midpoint traces
out a quarter circle, as shown. ♣

24. (a) First proof: We’ll present two proofs. The first uses a symmetry argument,
which is a standard (and slick) method of proof. Fig. 6.38(a) shows a circle
sitting on top of a line; the line is tangent to the circle. This setup has
left/right symmetry, meaning that if we flip it over (so that left and right
are reversed), it looks the same. Equivalently, the mirror image looks the
same. Said in yet another way, it looks the same if we view it through the
back of the paper.
If we flip over the setup in Fig. 6.38(a), it turns into Fig. 6.38(b), which
mean that the 𝛼 and 𝛽 angles have switched; 𝛼 is now on the right, and 𝛽

is on the left. However, the above left/right symmetry property tells us that
Fig. 6.38(b) must be exactly the same setup as Fig. 6.38(a), which means
that the 𝛼 angle must still be on the left, and likewise the 𝛽 angle must still
be on the right. Putting the preceding two sentences together, we see that
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Figure 6.38

the left angle in Fig. 6.38(b) must be equal to both 𝛼 (from the preceding
sentence) and also 𝛽 (from two sentences ago). We therefore conclude that
𝛼 = 𝛽. And since these two equal angles add up to 180◦ (since together
they form a straight line), they must each be 90◦, as we wanted to show.

Second proof: For this second proof, we’ll use the Pythagorean theorem
in what is called a proof by contradiction. In a proof by contradiction,
if we’re trying to prove a particular statement (let’s label the statement as
“𝑃”), the strategy is to make the assumption that 𝑃 is not true (which is the
opposite of what we’re actually trying to show). The goal is to then show
that this assumption leads to a false statement. It then logically follows that
our not-𝑃 assumption must have been incorrect, because true things can’t
logically lead to false things. So our original 𝑃 statement must be correct
(because if not-𝑃 is false, then 𝑃 must be true), as we wanted to show.
For example, consider the statement, “There are no integers (positive or
negative) 𝑎 and 𝑏 for which 2𝑎 + 6𝑏 = 5.” Now, there’s no chance of
testing all of the infinite number of possible 𝑎 and 𝑏 values and showing



310 Chapter 6. Pythagorean theorem

that none of them work. So we need a different method of proof, and a
proof by contradiction works well here. In search of a contradiction, let’s
assume that there do exist integers 𝑎 and 𝑏 for which 2𝑎 + 6𝑏 = 5. It then
follows (by dividing both sides by 2) that there exist integers 𝑎 and 𝑏 for
which 𝑎 + 3𝑏 = 5/2. But this is a false statement, because the lefthand side
is an integer (if 𝑎 and 𝑏 are integers), whereas the righthand side is not.
Our initial assumption (that there do exist integers. . . ) must therefore have
been incorrect, which means that we have successfully proved that there
are no integers 𝑎 and 𝑏 for which 2𝑎 + 6𝑏 = 5. We’ll discuss proofs by
contradiction in more detail in Chapter 12.

In our present tangent-line problem, our assumption (which we’ll end up
showing is incorrect) is that the tangent line is not perpendicular to the
radius at the point of contact. If this assumption is true, then of the two
angles the radius makes with the tangent, one must be larger than 90◦, and
one must be smaller than 90◦, as shown in Fig. 6.39. (Don’t try to make too
much sense of this figure, since we’re going to show that it can’t actually
look this way.)

radius (R)

circle

tangent

smaller than 90
A

center

Figure 6.39

Consider the angle that is smaller than 90◦, and draw a right triangle
containing that angle, as shown. Since the leg of a right triangle is (due to
the Pythagorean theorem) always shorter than the hypotenuse, which is 𝑅

here, the vertical leg of our right triangle is smaller than 𝑅. This implies
that point 𝐴 must be inside the circle (because its distance from the center
is less than the radius 𝑅). This contradicts the fact that every point on a
tangent line lies outside the circle (except for the single point that lies on the
circle). Therefore, since our assumption of non-perpendicularity leads to a
false statement (that 𝐴 is inside the circle), we conclude that the assumption
must have been incorrect. The radius and tangent line must therefore in fact
be perpendicular.
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(b) First proof: We’ll again present two proofs. As in part (a), the first
one uses a symmetry argument, and the second one uses the Pythagorean
theorem (but isn’t a proof by contradiction). In Fig. 6.40(a), the two tangents
are drawn from a point directly above the center of the circle. As with the
setup in part (a), this system has left/right symmetry. So if we flip it over
(or look at it in a mirror, or through the back of the paper), we obtain the
identical system in Fig. 6.40(b). The length 𝑑1 is now on the right. But
since it’s the same setup, the length 𝑑2 must also be on the right. Hence
𝑑1 = 𝑑2, as desired. This is exactly the same reasoning that led to the 𝛼 = 𝛽

conclusion in part (a).

(a)

d2 d2d1 d1

(b)

Figure 6.40

Second proof: From part (a), we know that the tangents are perpendicular
to the radii where they touch, as shown in Fig. 6.41. The two right triangles
shown have a common hypotenuse 𝐿, along with a common leg (the radius
𝑅). So the Pythagorean theorem tells us that the other legs have the same
length (both equal to

√
𝐿2 − 𝑅2), as desired.

R R

P

L

Figure 6.41

25. Eq. (6.35) in Example 6.4 tells us that 𝐵𝐴 = 2
√
𝑎𝑏. And since Eq. (6.35) is

valid for any two circles that touch tangentially, we can also apply it to the left
two circles in Fig. 6.21, with radii 𝑏 and 𝑟. 𝐵 and 𝐶 are now the relevant points
of contact on the tangent line, so Eq. (6.35) tells us that 𝐵𝐶 = 2

√
𝑟𝑏. Likewise,

applying Eq. (6.35) to the right two circles in Fig. 6.21, with radii 𝑟 and 𝑎, gives
𝐶𝐴 = 2

√
𝑟𝑎.
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We can now use the fact that 𝐵𝐶 + 𝐶𝐴 = 𝐵𝐴, which gives

2
√
𝑟𝑏 + 2

√
𝑟𝑎 = 2

√
𝑎𝑏 =⇒

√
𝑟
(√

𝑏 +
√
𝑎
)
=
√
𝑎𝑏

=⇒
√
𝑟 =

√
𝑎𝑏

√
𝑎 +

√
𝑏
, (6.84)

where we have divided both sides by 2, factored out the
√
𝑟 on the lefthand side,

and then divided both sides by
√
𝑎 +

√
𝑏. Squaring both sides then gives

𝑟 =

( √
𝑎𝑏

√
𝑎 +

√
𝑏

)2

=
𝑎𝑏

(√𝑎 +
√
𝑏)2

. (6.85)

Note that in the special case where 𝑏 = 𝑎, we have (replacing every 𝑏 in Eq. (6.85)
with 𝑎)

𝑟 =
𝑎 · 𝑎

(2√𝑎)2 =
𝑎2

4𝑎
=
𝑎

4
. (6.86)

So the small circle has 1/4 the radius of the large circles. This agrees with the
result in Exercise 6.20, where we solved the 𝑎 = 𝑏 case directly (with 𝑎 = 𝑏 = 1).

26. As in Example 6.4, the short leg of the shaded triangle is the 𝑎 − 𝑏 difference of
the radii. But the hypotenuse here isn’t 𝑎 + 𝑏, as it was in Example 6.4. Instead,
it equals

√
𝑎2 + 𝑏2 because it is the hypotenuse of right triangle 𝐴𝐵𝐶. This is

indeed a right triangle, because the dashed tangent is perpendicular to the radius
of the left circle at 𝐶, from Exercise 6.24(a).

The long leg of the shaded triangle is the desired distance 𝑑, so applying the
Pythagorean theorem to the shaded triangle gives

𝑑2 + (𝑎 − 𝑏)2 =
(√

𝑎2 + 𝑏2)2

=⇒ 𝑑2 =
(√

𝑎2 + 𝑏2)2 − (𝑎 − 𝑏)2

= (��𝑎2 +@@𝑏
2) − (��𝑎2 − 2𝑎𝑏 +@@𝑏

2)
= 2𝑎𝑏

=⇒ 𝑑 =
√

2𝑎𝑏 =
√

2
√
𝑎𝑏 = (1.41)

√
𝑎𝑏. (6.87)

This
√

2
√
𝑎𝑏 = (1.41)

√
𝑎𝑏 answer is smaller than the 2

√
𝑎𝑏 answer in Exam-

ple 6.4. This makes sense, because the centers of the circles are closer together
in this exercise (the circles partially overlap here).

In the special case where 𝑎 = 𝑏, we obtain 𝑑 =
√

2
√
𝑎2 =

√
2𝑎. In this case, the

𝐵𝐶 and 𝐴𝐶 segments are two sides of a square, with side length 𝑎. The distance
𝑑 is the same as the diagonal 𝐵𝐴 of this square (the distance between the centers
of the circles), as you can verify by drawing a picture. And the diagonal of a
square with side 𝑎 correctly has length

√
2𝑎.


