
Chapter 7

2D waves and other topics
David Morin, morin@physics.harvard.edu

This chapter is fairly short. In Section 7.1 we derive the wave equation for two-dimensional
waves, and we discuss the patterns that arise with vibrating membranes and plates. In
Section 7.2 we discuss the Doppler effect, which is relevant when the source of the wave
and/or the observer are/is moving through the medium in which the wave is traveling.

7.1 2D waves on a membrane

We studied transverse waves on a one-dimensional string in Chapter 4. Let’s now look
at transverse waves on a two-dimensional membrane, for example a soap film with a wire
boundary. Let the equilibrium position of the membrane be the x-y plane. So z is the
transverse direction (we’ll use z here instead of our customary ψ). Consider a little rect-
angle in the x-y plane with sides ∆x and ∆y. During the wave motion, the patch of the
membrane corresponding to this rectangle will be displaced in the z direction. But since
we are assuming (as always) that the transverse displacement is small (more precisely, that
the slope of the membrane is small), this patch is still approximately a rectangle. But it is
slightly curved, and it is this curvature that causes there to be a net transverse force, just
as was the case for the 1-D string. The only difference, as we’ll shortly see, is that we have
“double” the effect because the membrane is two dimensional.

As with the 1-D string, the smallness of the slope implies that all points in the membrane
move essentially only in the transverse direction; there is no motion parallel to the x-y plane.
This implies that the mass of the slightly-tilted patch is always essentially equal to σ∆x∆y,
where σ is the mass density per unit area.

Let the surface tension be S. The units of surface tension are force/length. If you draw
a line segment of length d` on the membrane, then the force that the membrane on one side
of the line exerts on the membrane on the other side is S d`. So the forces on the sides of
the little patch are S∆x and S∆y. A view of the patch, looking along the y direction, is
shown in Fig. 1. This profile looks exactly like the picture we had in the 1-D case (see Fig.
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4.2). So just as in that case, the difference in the slope at the two ends is what causes there
to be a net force in the z direction (at least as far as the sides at x and x+∆x go; there is
a similar net force from the other two sides).1 The net force in the z direction due to the

1As you look along the y axis, the patch won’t look exactly like the 1-D curved segment shown in Fig.
1, because in general there is curvature in the y direction too. But this fact won’t change our results.
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forces shown in Fig. 1 is

F = S∆y
(
z′(x+∆x)− z′(x)

)

= S∆y∆x
z′(x+∆x)− z′(x)

∆x

≈ S∆y∆x
∂2z

∂x2
. (1)

We haven’t bothered writing the arguments of the function z(x, y, t).
We can do the same thing by looking at the profile along the x direction, and we find

that the net force from the two sides at y and y + ∆y is S∆x∆y(∂2z/∂x2). The total
transverse force is the sum of these two results. And since the mass of the patch is σ∆x∆y,
the transverse F = ma equation (or rather the ma = F equation) for the patch is

(σ∆x∆y)
∂2z

∂t2
= S∆x∆y

(
∂2z

∂x2
+

∂2z

∂y2

)

=⇒ ∂2z

∂t2
=

S

σ

(
∂2z

∂x2
+

∂2z

∂y2

)
(wave equation) (2)

This looks quite similar to our old 1-D wave equation in Eq. (4.4), except that we now
have partial derivatives with respect to two spatial coordinates. How do we solve this
equation for the function z(x, y, t)? We know that any function can be written in terms of its
Fourier components. Since we have three independent variables, the Fourier decomposition
of z(x, y, t) consists of the triple integral,

z(x, y, t) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
g(kx, ky, ω)e

i(kxx+kyy+ωt)dkx dky dω. (3)

This comes about in the same way that the double integral came about in Eq. (4.16).
And since the wave equation in Eq. (2) is linear, it suffices to guess solutions of the form
ei(kxx+kyy+ωt). (Both Fourier analysis and linearity are necessary for this conclusion to
hold). Plugging this guess into Eq. (2) and canceling a minus sign gives

ω2 =
S

σ

(
k2x + k2y

)
(dispersion relation) (4)

This looks basically the same as the 1-D dispersion relation for transverse waves on a string,
ω2 = c2k2, but with the simple addition of a second k2 term. However, this seemingly minor
modification has a huge consequence: In the 1-D case, only one k value corresponded to a
given ω value. But in the 2-D case, an infinite number of kx and ky values correspond to a

given ω value, namely all the (kx, ky) points on a circle of radius ω
√
σ/S.

Let’s now look at some boundary conditions. Things get very complicated with arbitrarily-
shaped boundaries, so let’s consider the case of a rectangular boundary. We can imagine
having a soap film stretched across a rectangular wire boundary. Let the sides be parallel
to the coordinate axes and have lengths Lx and Ly, and let one corner be located at the
origin. The boundary condition for the membrane is that z = 0 on the boundary, because
the membrane must be in contact with the wire. Let’s switch from exponential solutions to
trig solutions, which work much better here. We can write the trig solutions in many ways,
but we’ll choose the basis where z(x, y, t) takes the form,

z(x, y, t) = A trig(kxx) trig(kyy) trig(ωt), (5)
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where “trig” means either sine or cosine. Similar to the 1-D case, the x = 0 and y = 0
boundaries tell us that we can’t have any cosine functions of x and y. So the solution must
take the form,

z(x, y, t) = A sin(kxx) sin(kyy) cos(ωt+ φ). (6)

And again similar to the 1-D case, the boundary conditions at x = Lx and y = Ly restrict
kx and ky to satisfy

kxx = nπ, kyy = mπ =⇒ kx =
nπ

Lx
, kx =

nπ

Lx
. (7)

The most general solution for z is an arbitrary sum of these basis solutions, so we have

z(x, y, t) =
∑
n,m

An,m sin

(
nπx

Lx

)
sin

(
mπy

Ly

)
cos(ωn,mt+ φn,m),

where ω2
n,m =

S

σ

[(
nπ

Lx

)2

+

(
mπ

Ly

)2
]
. (8)

Each basis solution (that is, each normal mode) in this sum is a standing wave. The
constants An,m and φn,m are determined by the initial conditions. If n or m is zero, the z is
identically zero, so n and m each effectively start at 1. Note that if we have a square with
Lx = Ly ≡ L, then pairs of integers (n,m) yield identical frequencies if n2

1 +m2
1 = n2

2 +m2
2.

A trivial case is where we simply switch the numbers, such as (1, 3) and (3, 1). But we can
also have, for example, (1, 7), (7, 1), and (5, 5).

What do these modes look like? In the case of a transverse wave on a 1-D string, it was
easy to draw a snapshot on a piece of paper. But it’s harder to do that in the present case,
because the wave takes up three dimensions. We could take a photograph of an actual 3-D
wave and then put the photograph on this page, or we could draw the wave with the aid of a
computer or with fantastic artistic skills. But let’s go a little more low-tech and low-talent.
We’ll draw the membrane in a simple binary sense, indicating only whether the z value is
positive or negative. The nodes (where z is always zero) will be indicted by dotted lines. If
we pick Lx 6= Ly to be general, then the lowest few values of n and m yield the diagrams
shown in Fig. 2. n signifies the number of (equal) regions the x direction is broken up into.
And likewise for m and the y direction.

x

y

(n,m)=(1,1) (1,2) (2,1) (2,2)

(1,3) (3,1) (2,3) (3,2) (3,3)

Figure 2
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For each of these snapshots, a little while later when cos(ωn,mt+φn,m) = 0, the transverse
displacement z will be zero everywhere, so the entire membrane will lie in the x-y plane.
For the next half cycle after this time, all the +’s and −’s in each figure will be reversed.
They will flip flop back and forth after each half cycle. Observe that the signs are opposite
for any two regions on either side of a dotted line, consistent with the fact that z is always
zero on the dotted-line nodes.

The solution for, say, the (3, 2) mode is

z(x, y, t) = A3,2 sin

(
3πx

Lx

)
sin

(
2πy

Ly

)
cos(ω3,2t+ φ3,2), (9)

where ω3,2 is given by Eq. (8). The first sine factor here is zero for x = 0, Lx/3, 2Lx/3,
and Lx. And the second sine factor is zero for y = 0, Ly/2, and Ly. These agree with the
dotted nodes in the (3, 2) picture in Fig. 2. In each direction, the dotted lines are equally
spaced.

Note that the various An,m frequencies are not simple multiples of each other, as they are
for a vibrating string with two fixed ends (see Section 4.5.2). For example, if Lx = Ly ≡ L,
then the frequencies in Eq. (8) take the form,

π

L

√
S

σ

√
n2 +m2. (10)

So the first few frequencies are ω1,1 ∝ √
2, ω2,1 ∝ √

5, ω2,2 ∝ √
8, ω3,1 ∝ √

10, and so on.
Some of these are simple multiples of each other, such as ω2,2 = 2ω1,1, but in general the
ratios are irrational. So there are lots of messy harmonics. That’s why musical instruments
are usually one-dimensional objects. The frequencies of their modes form a nice linear
progression (or are in rational multiples of you include the effects of pressing down keys or
valves).

The other soap-film boundary that is reasonably easy to deal with is a circle. In this
case, it is advantageous to write the partial derivative in terms of polar coordinates. It can
be shown that (see Problem [to be added])

∂2

∂x2
+

∂2

∂y2
=

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
. (11)

When this is substituted into Eq. (2), the solutions z(r, θ, t) aren’t as simple as in the
Cartesian case, but it’s still possible to get a handle on them. They involve the so-called
Bessel functions. The pictures analogous to the ones in Fig. 2 are shown in Fig. 3. These
again can be described in terms of two numbers. In the rectangular case, the nodal lines
divided each direction evenly. But here the nodal lines are equally spaced in the θ direction,
but not in the r direction.
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(nr,nθ)=(1,0) (1,2)(1,1)

(2,0) (2,1) (2,2)

Figure 3

Chladni plates

Consider a metal plate that is caused to vibrate by, say, running a violin bow across its edge.
If this is done properly (it takes some practice), then it is possible to excite a single mode
with a particular frequency. Another method, which is more high-tech and failsafe (but
less refined), is to blast the plate with a sound wave of a given frequency. If the frequency
matches the frequency of one of the modes, then we will have a resonance effect, in the
same manner that we obtained resonances in the coupled oscillator in Section 2.1.5. If the
plate is sprinkled with some fine sand, the sand will settle at the nodal lines (or curves),
because the plate is moving at all the other non-node points, and this motion kicks the sand
off those locations. Since the sand isn’t kicked off the nodes, that’s where it settles. This is
basically the same reason why sand collects at the side of a road and not on it. Wind from
the cars pushes the sand off the road, and there’s no force pushing it back on. The sand is
on a one-way dead-end street, so to speak.

The nodal curves (which are different for the different modes) generally take on very
interesting shapes, so we get all sorts of cool figures with the sand. Ernst Chladni (1756-
1827) studied these figures in great detail. They depend on the shape of the metal plate and
the mode that the plate is in. They also depend on the boundary conditions you choose. For
example, you can hold the plate somewhere in the interior, or on the edge. And furthermore
you can choose to hold it at any number of places. And furthermore still, there are different
ways to hold it; you can have a clamp or a hinge. Or you can even support the plate with
a string. These all give different boundary conditions. We won’t get into the details, but
note that if you grab the plate at a given point with a clamp or a hinge, you create a node
there. (See Problem [to be added] if you do want to get into the details.) [Pictures will be
added.]

7.2 Doppler effect

7.2.1 Derivation

When we talk about the frequency of a wave, we normally mean the frequency as measured
in the frame in which the air (or whatever medium is relevant) is at rest. And we also
normally assume that the source is at rest in the medium. But what if the source or the
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observer is/are moving with respect to the air? (We’ll work in terms of sound waves here.)
What frequency does the observer hear then? We’ll find that it is modified, and this effect
is known as the Doppler effect. In everyday experience, the Doppler effect is most widely
observed with sound waves. However, it is relevant to any wave, and in particular there are
important applications with electromagnetic waves (light).

Let’s look at the two basic cases of a moving source and a moving observer. In both of
these cases, we’ll do all of the calculations in the frame of the ground, or more precisely, the
frame in which the air is at rest (on average; the molecules are of course oscillating back
and forth longitudinally).

Moving source

Assume that you are standing at rest on a windless day, and a car with a sound source (say,
a siren) on it is heading straight toward you with speed vs (“s” for source). The source
emits sound, that is, pressure waves. Let the frequency (in the source’s frame) be f cycles
per second (Hertz). Let’s look at two successive maxima of the pressure (actually any two
points whose phases differ by 2π would suffice). In the time between the instants when the
source is producing these maximum pressures, the source will travel a distance vst, where
t = 1/f . Also during this time t, the first of the pressure maxima will travel a distance ct,
where c is the wave speed. When the second pressure maximum is produced, it is therefore
a distance of only d = ct − vst behind the first maximum, instead of the ct distance if the
source were at rest. The wavelength is therefore smaller. The situation is summarized in
Fig. 4.

(start)

(time t)
vs

vst

c

ct

source

phase φ

phase φ-2π observer

 (at rest)

Figure 4

The movement of the source doesn’t affect the wave speed, because the speed is a function
of only the quantities γ, p0, and ρ (see Eq. (5.14)); the derivation in Section 5.2 assumed
nothing about the movement of the source. So the time between the arrivals at your ear
of the two successive pressure maxima is T = d/c = (c − vs)t/c. The frequency that you
observe is therefore (the subscript “ms” is for moving source)

fms =
1

T
=

c

c− vs
· 1
t
=

c

c− vs
f (12)

This result is valid for vs < c. We’ll talk about the vs ≥ c case in Section 7.2.3.
If vs = 0, then Eq. (12) yields fms = f , of course. And if vs → c, then fms approaches

infinity. This makes sense, because the pressure maxima are separated by essentially zero
distance in this case (the wavelength is very small), so they pile up and a large number hit
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your ear in a given time interval.2 Eq. (12) is also valid for negative vs, and we see that
fms → 0 as vs → −∞. This also makes sense, because the pressure maxima are very far
apart.

Moving observer

Let’s now have the source be stationary but the observer (you) be moving directly toward
the source with speed vo (“o” for observer). Consider two successive meetings between you
and the pressure maxima. As shown in Fig. 5, the distance between successive maxima (in
the ground frame) is simply ct, where t = 1/f .

(start)

(time t)

vo

c c

phase φ
phase φ-2π

 source

(at rest)

ct

Figure 5

This gap is closed at a rate of c + vo, because you are heading to the left with speed
vo and the pressure maxima are heading to the right with speed c. So the time between
successive meetings is T = ct/(c + vo). The frequency that you observe is therefore (the
subscript “mo” is for moving observer)

fmo =
1

T
=

c+ vo
c

· 1
t
=

c+ vo
c

f (13)

This result is valid for vo > −c (where negative velocities correspond to moving to the
right). If vo < −c, then you are moving to the right faster than the pressure maxima, so
they can never catch up to you as you recede away. In the cutoff case where vo = −c, we
have fmo = 0. This makes sense, because you are receding away from the pressure maxima
as fast as they are moving.

If vo = 0, then Eq. (13) yields fmo = f , of course. And if vo = c, then fmo equals 2f ,
so it doesn’t diverge as in the moving-source case. The pressure maxima are the “normal”
distance of ct apart, but the gap is being closed at twice the normal rate. If vo → ∞, then
Eq. (13) yields fmo → ∞, which makes sense. You encounter a large number of pressure
maxima in a given time simply because you are moving so fast.

2However, if vs is too close to c, then the wavelength becomes short enough to make it roughly the same
size as the amplitude of the displacement wave. Our assumption of small slope (which we used in Section
5.2) then breaks down, and we can’t trust any of these results. Nonlinear effects become important, but we
won’t get into those here.
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Remarks:

1. If the observed frequency is less than f , then we say that the sound (or whatever wave) is
redshifted. If it is greater than f , then we say it is blueshifted. This terminology comes from
the fact that red light is at the low-frequency (long wavelength) end of the visible spectrum,
and blue light is at the high-frequency (short wavelength) end. This terminology is carried
over to other kinds of waves, even though there is of course nothing red or blue about, say,
sound waves. Well, unless someone is yelling “red” or “blue,” I suppose.

2. The results in Eqs. (12) and (13) don’t reduce to the same thing when vs = vo, even though
these two cases yield the same relative speed between the source and observer. This is because
the situation is not symmetrical in vs and vo; there is a preferred frame, namely the frame in
which the air is at rest. The speed with respect to this frame matters, and not just the relative
speed between the observer and the source. It makes sense that things aren’t symmetrical,
because a speed of v = c intuitively should make fms equal to infinity, but not fmo.

3. What if both you and the source are moving toward each other with speeds vs and vo?
Imagine a hypothetical stationary observer located somewhere between you and the source.
This observer will hear the frequency fms given in Eq. (12). For all you know, you are listening
to this stationary observer emit a sound with frequency fms, instead of the original moving
source with frequency f . (The stationary observer can emit a wave exactly in phase with the
one he hears. Or equivalently, he can duck and have the wave go right past him.) So the
frequency you hear is obtained by letting the f in Eq. (13) equal fms. The frequency when
both the source and observer are moving is therefore

Fmso =
(
c+ vo

c

)(
c

c− vs

)
=

c+ vo
c− vs

f (14)

4. For small vs, we can use 1/(1− ε) ≈ 1 + ε to write the result in Eq. (12) as

fms =
1

1− vs/c
f ≈

(
1 +

vs
c

)
f. (15)

And the result in Eq. (13) can be written (exactly) as

fmo =
(
1 +

vo
c

)
f. (16)

So the two results take approximately the same form for small speeds.

5. If the source isn’t moving in a line directly toward or away from you (or vice versa), then
things are a little more complicated, but not too bad (see Problem [to be added]). The
frequency changes continuously from fc/(c − vs) at t = −∞ to fc/(c + vs) at t = +∞ (the
same formula with vs → −vs). So it slides from one value to the other. You’ve undoubtedly
heard a siren doing this. If the source instead hypothetically moved in a line right through
you, then it would abruptly drop from the higher to the lower of these frequencies. So, in
the words of John Dobson, “The reason the siren slides is because it doesn’t hit you.”

6. Consider a wall (or a car, or whatever) moving with speed v toward a stationary sound
source. If the source emits a frequency f , and if the wall reflects the sound back toward the
source, what reflected frequency is observed by someone standing next to the source? The
reflection is a two-step process. First the wall acts like an observer, so from Eq. (13) it receives
a frequency of f(c + v)/c. But then it acts like a source and emits whatever frequency it
receives (imagine balls bouncing off a wall). So from Eq. (12) the observer hears a frequency
of c/(c− v) · f(c+ v)/c = f(c+ v)/(c− v). The task of Problem [to be added] is to find the
observed frequency if the observer (and source) is additionally moving with speed u toward
the wall (which is still moving with speed v). ♣

Some examples and applications of the Doppler effect are:

Sirens on ambulances, police cars, etc: As the sirens move past you, the pitch goes
from high to low. However, with fire trucks, most of the change in pitch of the siren is due
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to a different effect. These sirens generally start at a given pitch and then gradually get
lower, independent of the truck’s movement. This is because most fire trucks use siren disks
to generate the sound. A siren disk is a disk with holes in it that is spun quickly in front of
a fast jet of air. The result is high pressure or low pressure, depending on whether the air
goes through a hole, or gets blocked by the disk. If the frequency with which the holes pass
in front of the jet is in the audible range, then a sound is heard. (The wave won’t be an
exact sine wave, but that doesn’t matter.) The spinning disk, however, usually moves due
to an initial kick and not a sustained motor, so it gradually slows down. Hence the gradual
decrease in pitch.

Dopper radar: Light waves reflect off a moving object, and the change in frequency is
observed (see Remark 6 above). This has applications in speed guns, weather, and medicine.
Along the same lines is Doppler sonar, in particular underwater with submarines.

Astronomy: Applications include the speed of stars and galaxies, the expansion of the
universe, and the determination of binary star systems. The spectral lines of atomic tran-
sitions are shifted due to the motion of the star or galaxy. These applications rely on the
(quite reasonable) assumption that the frequencies associated with atomic transitions are
independent of their location in the universe. That is, a hydrogen atom in a distant galaxy
is identical to a hydrogen atom here on earth. Hard to prove, of course, but a reasonable
thing to assume.

Temperature determination of stars, plasma: This makes use of the fact that not
only do spectral lines shift, they also broaden due to the large range of velocities of the
atoms in a star (the larger the temperature, the larger the range).

7.2.2 Relativity

The difference in the results in Eqs. (12) and (13) presents an issue in the context of relativity.
If a source is moving toward you with speed v and emits a certain frequency of light, then
the frequency you observe must be the same as it would be if instead you were moving
toward the source with speed v. This is true because one of the postulates of relativity is
that there is no preferred reference frame. All that matters is the relative speed.

It is critical that we’re talking about a light wave here, because light requires no medium
to propagate in. (Gravity waves would work too, since they can propagate in vacuum.) If
we were talking about a sound wave, then the air would define a preferred reference frame,
thereby allowing the two frequencies to be different, as is the case in Eqs. (12) and (13).

So which of the above results is correct for light waves? Well, actually they’re both wrong.
We derived them using nonrelativistic physics, so they work fine for everyday speeds. But
they are both invalid for relativistic speeds. Let’s see how we can correct each of them.
Let’s label the vs and vo in the above results as v.

In the “moving source” setup, the frequency of the source in your frame is now f/γ
(where γ = 1/

√
1− v2/c2), because the source’s clock runs slow in your frame, due to time

dilation. f/γ is the frequency in your frame with which the phase of the light wave passes
through a given value, say zero, as it leaves the source. But as in the nonrelativistic case,
this isn’t the frequency that you observe, due to the fact that the “wavefronts” (locations
of equal phase) end up closer together. This part of the calculation proceeds just as above,
so the only difference is that the emission frequency f is changed to f/γ. From Eq. (12),
you therefore observe a frequency of (f/γ)c/(c− v).

In the “moving observer” setup, the frequency we calculated in the nonrelativistic case
was the frequency as measured in the source’s frame. But your clock runs slow in the
source’s frame, due to time dilation. The frequency that you observe is therefore larger by
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a factor of γ. (It is larger because more wavefronts will hit your eye during the time that
one second elapses on your clock, because your clock is running slow.) From Eq. (13), you
therefore observe a frequency of γ · f(c+ v)/c.

As we argued above, these two results must be equal. And indeed they are, because

f

γ

c

c− v
= γf

c+ v

c
⇐⇒ c2

c2 − v2
= γ2 ⇐⇒ 1

1− v2/c2
= γ2, (17)

which is true, as we wanted to show.

7.2.3 Shock waves

Let’s return to the world of nonrelativistic physics. In the “moving source” setup above, we
noted that the result isn’t valid if vs > c. So what happens in this case? Since the source is
moving faster than the sound (or whatever) wave, the source gets to the observer before the
previously-emitted wavefronts get there. If we draw a number of wavefronts (places with,
say, maximal pressure) that were emitted at various times, we obtain the picture shown in
Fig. 6.

source earlier

source now

Figure 6
The cone is a “shock wave” where the phases of waves emitted at different times are equal.

This causes constructive interference. (In the case where vs < c, the different wavefronts
never interact with each other, so there is never any constructive interference; see Fig. 8
below.) The amplitude of the wave on the surface of the cone is therefore very large. So
someone standing off to the side will hear a loud “sonic boom” when the surface of the cone
passes by.

We can find the half angle of the cone in the following way. Fig. 7 shows the circular
θ

ct

vt

Figure 7

wavefront that was emitted at time t ago, along with the original and present locations of
the source. The source travels a distance vt in this time, and the sound travels a distance
ct. So the half angle of the cone satisfies

sin θ =
c

v
. (18)

The total angle is therefore 2θ = 2 sin−1(c/v). This result is valid only for v ≥ c. The larger
v is, the narrower the cone. If v → ∞ then θ → 0. And if v = c then 2θ = 180◦, so the
“cone” is very wide, to the point of being just a straight line.

A summary of the various cases of the relative size of v and c is shown in Fig. 8. In the
v = c case, it is intuitively clear that the waves pile up at the location of the moving source,
because the waves are never able to gain any ground on the source. In the v > c case,
the cone actually arises from this same effect (although to a lesser extent) for the following
reason. If v > c, there is a particular moment in time when the distance between the source
and the observer is decreasing at speed c. (This follows from continuity; the rate of decrease
is v at infinity, and zero at closest approach.) The transverse component of the source’s
velocity isn’t important for the present purposes, so at this moment the source is effectively
moving directly toward the observer with speed c. The reasoning in the v = c case then
applies. The task of Problem [to be added] is to be quantitative about this.
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(v<c) (v=c) (v>c)

Figure 8

Shock waves exist whenever the speed of the source exceeds the speed of wave (whatever
it may be) in the medium through which the source is moving. Examples include (1) planes
exceeding the speed of sound, (2) boats exceeding the speed of water waves; however, this
subject is more complicated due to the dispersive nature of water waves – we’ll talk about
this in Chapter 11, (3) charged particles moving through a material faster than the speed
of light in that material (which equals c/n, where n is the index of refraction); this is called
“Cherenkov radiation,” and (4) the crack of a whip.

This last example is particularly interesting, because the thing that makes it possible
for the tip of a whip to travel faster than the speed of sound is impedance matching; see
the “Gradually changing string density” example in Section 4.3.2. Due to this impedance
matching, a significant amount of the initial energy that you give to the whip ends up in
the tip. And since the tip is very light, it must therefore be moving very fast. If the linear
mass density of the whip changed abruptly, then not much of the initial energy would be
transmitted across the boundary. The snap of a wet towel is also the same effect; see The
Physics Teacher, pp. 376-377 (1993).


