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Please email morin@physics.harvard.edu if you find any errors.

The corrections below are listed by page number. They are grouped into three categories:
(1) Important errors that will cause confusion, (2) minor errors that might cause confusion,
and (3) trivial errors that should not cause confusion. Additional clarifications are listed at
the end.

Important errors:
88: Solution to Problem 3.7: The first sentence of the second paragraph states, “Because

the magnitudes of the friction force and the gravitational force along the plane are
equal, the acceleration along the direction of motion equals the negative of the accel-
eration in the direction down the plane.” Although this statement is correct, more
explanation is required. This issue is that these two directions aren’t orthogonal, so
the accelerations in the two directions aren’t independent.
The correct justification is given in the figure below. At a given time t, let the velocity
be vold, as shown. A small time ∆t later, the velocity is vnew. The gravitational and
frictional forces (both with magnitude mg sin θ) are indicated, along with the net force
obtained by completing the parallelogram (which is a rhombus in this case) formed
by the two individual forces and the dotted lines shown. Since we are drawing things
alongside the velocity vectors, we have actually drawn the changes in velocity acquired
during the small time ∆t. That is, the total acceleration is anet = Fnet/m, so the
total change in the velocity vector is anet ∆t = Fnet ∆t/m, as shown.
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In going from vold to vnew, the increase in vy is indicated in the figure (positive
vy points down the plane). Additionally, since ∆t is assumed to be small, vnew is
essentially parallel to vold. So the length AB in the figure is essentially equal to
the length AC. The length of v (that is, v ≡

√
v2x + v2y

)
therefore decreases by

the amount indicated. But since the parallelogram formed by the individual forces
is in fact a rhombus, the decrease in v equals the increase in vy. The sum v + vy
is therefore constant throughout the motion, as claimed. The rest of the solution
proceeds as stated.

183: Exercise 5.48: Modify part (b) of this problem to read: “(b) the ball is not allowed
to touch the pipe, but assume that it skims the top of the pipe.” Without this extra
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condition, the problem is more difficult, and it turns out (as you are encouraged to
show) that the minimum-speed trajectory actually skims the pipe at points 45◦ down
from the top, as opposed to skimming it at the top.

427: Exercise 9.55: The level of this exercise should be increased to four stars, and the
latter part should now read:

…of radius R/2. Assume that the coefficient of friction between the ball and the
cone is arbitrarily large. What is the frequency of precession, Ω? Show that
the condition on ℓ for the setup to be possible is ℓ > (3

√
3/4)R. If we instead

have a solid ball with I = (2/5)mR2, find Ω and show that the condition on ℓ
is (5

√
3/2)R > ℓ > (5

√
3/8)R. What about a general I = βmR2? There is a

special value of β; what is it, and why is it special?

484: Exercise 10.24 should be replaced with:

At a polar angle θ, a projectile is fired eastward with speed v0 at an angle α
above the ground. Show that the southward (in the northern hemisphere) and
eastward deflections due to the Coriolis force are (to first order in ω)

dsouth = (4ωv30/g
2) cos θ cosα sin2 α,

deast = (4ωv30/g
2) sin θ

(
cos2 α sinα− (1/3) sin3 α)

)
.

Hint: The first term in deast arises because the flight time is modified due to the
vertical component of the Coriolis force.

Minor errors:
116: The line before Eq. (4.46): The eiωt should be eiαt.

237: In Eq. (6.59) we’re concerned with infinitesimal ϵ, so the derivative dL/dϵ is being
evaluated at ϵ = 0. So it should read “0 = dL

dϵ |ϵ=0 = . . .” The other terms throughout
the proof should technically also have the “|ϵ=0” restriction.

259: 6th line on page: “numerically using Eq. (6.125)”

287: 2nd sentence of Section 7.4.1: The order of M⊙ and m should be reversed.

314: 2nd line of 2nd paragraph of the Remarks: The square root should be removed. So it
should read, “a = g sin θ/(1 + β).”

319: Eq. (8.27): After the second “=” sign the exponent should be 4, not 2. So it should
read, “(R4/4)ρπ.”

349: 3rd line of solution to Problem 8.1: The second “2” should not be there. So it should
read, “−2mgd+mgd = −mgd.”

364: Eq. (8.124): There is an extra factor of V0 in the expression for ω; the V0 in front of
the fraction should be removed.

547: Eq. (11.72): The upper-right entry in the matrix on the righthand side should be
v1 + v2.

588: 2nd line of Remark 3: We haven’t dropped the c’s at this point, so it should read,
“E = γmc2”

590: Last line on page: Again, we haven’t dropped the c’s yet, so it should read, “E2 −
|p|2c2 = m2c4.”
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Trivial errors:
259: 8th line on page: “in the first case”

320: Eq. (8.30): There should be a dθ in the last integral in the first line.

343: Fig. 8.51: The m’s should be capital M ’s.

368: Fig. 8.80: The V should be a V0.

Clarifications:
72: Problem 3.13: In this pencil-balancing problem, we’re assuming that the rod is in-

finitely thin, or equivalently that the tip is infinitely sharp. This is therefore a hypo-
thetic problem. If you want to get realistic and assume that the tip is at least as wide
as an atom, then things get very tricky: Is the bottom atom flat, in which case the
pencil has to extract itself from a potential well? Or is the atom round, in which case
there is no potential well? And what are the forces between the atom and the one(s)
it touches on the table? Tricky indeed.

336: 4th line of Problem 8.14: Clarification: “free to rotate about its fixed axis”
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